2.484 ODE No. 484
\[ \left (2 x y(x)-x^2\right ) y'(x)^2-6 x y(x) y'(x)-y(x)^2+2 x y(x)=0 \]
✓ Mathematica : cpu = 0.133521 (sec), leaf count = 157
DSolve[2*x*y[x] - y[x]^2 - 6*x*y[x]*Derivative[1][y][x] + (-x^2 + 2*x*y[x])*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to -\sqrt {3 x^2-2 e^{\frac {c_1}{2}} x}+2 x-e^{\frac {c_1}{2}}\right \},\left \{y(x)\to \sqrt {3 x^2-2 e^{\frac {c_1}{2}} x}+2 x-e^{\frac {c_1}{2}}\right \},\left \{y(x)\to -\sqrt {3 x^2+2 e^{\frac {c_1}{2}} x}+2 x+e^{\frac {c_1}{2}}\right \},\left \{y(x)\to \sqrt {3 x^2+2 e^{\frac {c_1}{2}} x}+2 x+e^{\frac {c_1}{2}}\right \}\right \}\]
✓ Maple : cpu = 0.109 (sec), leaf count = 115
dsolve((2*x*y(x)-x^2)*diff(y(x),x)^2-6*x*y(x)*diff(y(x),x)-y(x)^2+2*x*y(x) = 0,y(x))
\[y \left (x \right ) = 0\]