2.483 ODE No. 483
\[ \left (2 x y(x)-x^2\right ) y'(x)^2+2 x y(x) y'(x)-y(x)^2+2 x y(x)=0 \]
✓ Mathematica : cpu = 0.140172 (sec), leaf count = 145
DSolve[2*x*y[x] - y[x]^2 + 2*x*y[x]*Derivative[1][y][x] + (-x^2 + 2*x*y[x])*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to -\sqrt {-x^2-2 e^{\frac {c_1}{2}} x}-e^{\frac {c_1}{2}}\right \},\left \{y(x)\to \sqrt {-x^2-2 e^{\frac {c_1}{2}} x}-e^{\frac {c_1}{2}}\right \},\left \{y(x)\to e^{\frac {c_1}{2}}-\sqrt {-x^2+2 e^{\frac {c_1}{2}} x}\right \},\left \{y(x)\to \sqrt {-x^2+2 e^{\frac {c_1}{2}} x}+e^{\frac {c_1}{2}}\right \}\right \}\]
✓ Maple : cpu = 0.099 (sec), leaf count = 103
dsolve((2*x*y(x)-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+2*x*y(x)-y(x)^2 = 0,y(x))
\[y \left (x \right ) = 0\]