2.34 ODE No. 34
\[ f(x) y(x)^2+g(x) y(x)+y'(x)=0 \]
✓ Mathematica : cpu = 0.070472 (sec), leaf count = 54
DSolve[g[x]*y[x] + f[x]*y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x-g(K[1])dK[1]\right )}{-\int _1^x-\exp \left (\int _1^{K[2]}-g(K[1])dK[1]\right ) f(K[2])dK[2]+c_1}\right \}\right \}\]
✓ Maple : cpu = 0.02 (sec), leaf count = 28
dsolve(diff(y(x),x)+f(x)*y(x)^2+g(x)*y(x) = 0,y(x))
\[y \left (x \right ) = \frac {{\mathrm e}^{\int -g \left (x \right )d x}}{\int {\mathrm e}^{\int -g \left (x \right )d x} f \left (x \right )d x +c_{1}}\]
Hand solution
\begin{align} y^{2}f+gy+y^{\prime } & =0\nonumber \\ y^{\prime } & =-gy-y^{2}f\nonumber \\ & =P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\tag {1}\end{align}
This is Bernoulli first order non-linear ODE. \(P\left ( x\right ) =0,Q\left ( x\right ) =-g,R\left ( x\right ) =f\). First step is to divide by \(y^{2}\)
\begin{equation} \frac {y^{\prime }}{y^{2}}=-g\frac {1}{y}-f\tag {2}\end{equation}
Let \(u=\frac {1}{y}\), then \(u^{\prime }=\frac {-y^{\prime }}{y^{2}}\) and (2) becomes
\begin{align*} -u^{\prime } & =-gu-f\\ u^{\prime }-gu & =f \end{align*}
Integrating factor is \(e^{-\int gdx}\) hence
\begin{align*} d\left ( e^{-\int gdx}u\right ) & =fe^{-\int gdx}\\ e^{-\int gdx}u & =\int fe^{-\int gdx}dx+C\\ u & =e^{\int gdx}\left ( \int fe^{-\int gdx}dx+C\right ) \end{align*}
Hence
\begin{align*} y & =\frac {1}{e^{\int gdx}\left ( \int fe^{-\int gdx}+C\right ) }\\ & =\frac {e^{-\int gdx}}{\int fe^{-\int gdx}dx+C}\end{align*}
Let \(\beta =e^{-\int gdx}\) then
\[ y=\frac {\beta }{\int f\beta dx+C}\]
Verification
restart;
eq:=diff(y(x),x)+f(x)*y(x)^2+g(x)*y(x) = 0;
beta:=exp(-Int(g(x),x)):
my_sol:=beta/(Int(f(x)*beta,x)+_C1);
odetest(y(x)=my_sol,eq);
0