2.33   ODE No. 33

\[ -\frac {y(x)^2 f'(x)}{g(x)}+\frac {g'(x)}{f(x)}+y'(x)=0 \]

Mathematica : cpu = 0.311977 (sec), leaf count = 160

DSolve[-((y[x]^2*Derivative[1][f][x])/g[x]) + Derivative[1][g][x]/f[x] + Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{(g(x)+f(x) K[2])^2}-\int _1^x\left (\frac {2 \left (f(K[1]) K[2]^2 f'(K[1])-g(K[1]) g'(K[1])\right )}{g(K[1]) (g(K[1])+f(K[1]) K[2])^3}-\frac {2 K[2] f'(K[1])}{g(K[1]) (g(K[1])+f(K[1]) K[2])^2}\right )dK[1]\right )dK[2]+\int _1^x-\frac {f(K[1]) y(x)^2 f'(K[1])-g(K[1]) g'(K[1])}{f(K[1]) g(K[1]) (g(K[1])+f(K[1]) y(x))^2}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.354 (sec), leaf count = 58

dsolve(diff(y(x),x)-y(x)^2*diff(f(x),x)/g(x)+diff(g(x),x)/f(x) = 0,y(x))
 
\[y \left (x \right ) = \frac {-g \left (x \right ) f \left (x \right ) \left (\int \frac {\frac {d}{d x}f \left (x \right )}{g \left (x \right ) f \left (x \right )^{2}}d x \right )-g \left (x \right ) f \left (x \right ) c_{1} -1}{f \left (x \right )^{2} \left (\int \frac {\frac {d}{d x}f \left (x \right )}{g \left (x \right ) f \left (x \right )^{2}}d x +c_{1} \right )}\]

Hand solution

\begin{align} -\frac {f^{\prime }}{g}y^{2}+\frac {g^{\prime }}{f}+y^{\prime } & =0\nonumber \\ y^{\prime } & =-\frac {g^{\prime }}{f}+\frac {f^{\prime }}{g}y^{2}\nonumber \\ & =P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\tag {1}\end{align}

This is Ricatti first order non-linear ODE. \(P\left ( x\right ) =-\frac {g^{\prime }}{f},Q\left ( x\right ) =0,R\left ( x\right ) =\frac {f^{\prime }}{g}\).

To do.