2.21   ODE No. 21

\[ y'(x)-y(x)^2+y(x) \sin (x)-\cos (x)=0 \]

Mathematica : cpu = 0.307977 (sec), leaf count = 71

DSolve[-Cos[x] + Sin[x]*y[x] - y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {-\sin (x) e^{\cos (x)}+c_1 \left (1-\sin (x) e^{\cos (x)} \int _1^xe^{-\cos (K[1])}dK[1]\right )}{e^{\cos (x)}+c_1 e^{\cos (x)} \int _1^xe^{-\cos (K[1])}dK[1]}\right \}\right \}\]

Maple : cpu = 0.132 (sec), leaf count = 25

dsolve(diff(y(x),x)-y(x)^2+y(x)*sin(x)-cos(x) = 0,y(x))
 
\[y \left (x \right ) = -\frac {{\mathrm e}^{-\cos \left (x \right )}}{c_{1} +\int {\mathrm e}^{-\cos \left (x \right )}d x}+\sin \left (x \right )\]

Hand solution

\begin{align} y^{\prime }-y^{2}+y\sin \left ( x\right ) -\cos \left ( x\right ) & =0\nonumber \\ y^{\prime } & =y^{2}-y\sin \left ( x\right ) +\cos \left ( x\right ) \tag {1}\end{align}

This is Riccati first order non-linear ODE of the form of the general form \(y^{\prime }=P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\) where \(P\left ( x\right ) =\cos \left ( x\right ) ,Q\left ( x\right ) =-\sin \left ( x\right ) ,R\left ( x\right ) =1\). It is best to first try to spot a particular solution \(y_{p}\) and use the transformation \(y=y_{p}+\frac {1}{u}\) otherwise we use \(y=-\frac {u^{\prime }}{yR\left ( x\right ) }\) transformation. For this problem

\[ y_{p}=\sin \left ( x\right ) \]

Therefore

\begin{align*} y & =\sin x+\frac {1}{u}\\ y^{\prime } & =\cos x-\frac {u^{\prime }}{u^{2}}\end{align*}

Equating this to (1) gives

\begin{align*} y^{2}-y\sin \left ( x\right ) +\cos \left ( x\right ) & =\cos x-\frac {u^{\prime }}{u^{2}}\\ \left ( \sin x+\frac {1}{u}\right ) ^{2}-\left ( \sin x+\frac {1}{u}\right ) \sin x+\cos x & =\cos x-\frac {u^{\prime }}{u^{2}}\\ \sin ^{2}x+\frac {1}{u^{2}}+\frac {2}{u}\sin x-\sin ^{2}x-\frac {1}{u}\sin x & =-\frac {u^{\prime }}{u^{2}}\\ \frac {1}{u^{2}}+\frac {1}{u}\sin x & =-\frac {u^{\prime }}{u^{2}}\\ 1+u\sin x & =-u^{\prime }\\ u^{\prime }+u\sin x & =-1 \end{align*}

Integrating factor is \(e^{\int \sin x}=e^{-\cos x}\), hence

\[ d\left ( e^{-\cos x}u\right ) =-e^{-\cos x}\]

Integrating both sides

\begin{align*} e^{-\cos x}u & =-{\displaystyle \int } e^{-\cos x}dx+C\\ u & =e^{\cos x}\left ( C-{\displaystyle \int } e^{-\cos x}dx\right ) \end{align*}

Since \(y=\sin x+\frac {1}{u}\) then

\[ y=\sin x+\frac {e^{-\cos x}}{C-{\displaystyle \int } e^{-\cos x}dx}\]

Or letting \(C_{1}=-C\) to make match Maple form, we obtain

\[ y=-\frac {e^{-\cos x}}{C_{1}+{\displaystyle \int } e^{-\cos x}dx}+\sin x \]