2.20   ODE No. 20

\[ \left (x^2+1\right ) y(x)+y'(x)-y(x)^2-2 x=0 \]

Mathematica : cpu = 0.14071 (sec), leaf count = 49

DSolve[-2*x + (1 + x^2)*y[x] - y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {e^{\frac {x^3}{3}+x}}{-\int _1^xe^{\frac {K[1]^3}{3}+K[1]}dK[1]+c_1}+x^2+1\right \}\right \}\]

Maple : cpu = 0.046 (sec), leaf count = 34

dsolve(diff(y(x),x)-y(x)^2+(x^2+1)*y(x)-2*x = 0,y(x))
 
\[y \left (x \right ) = x^{2}+1+\frac {{\mathrm e}^{\frac {1}{3} x^{3}+x}}{c_{1} -\left (\int {\mathrm e}^{\frac {1}{3} x^{3}+x}d x \right )}\]

Hand solution

\begin{align} \left ( x^{2}+1\right ) y+y^{\prime }-y^{2}-2x & =0\nonumber \\ y^{\prime } & =-\left ( x^{2}+1\right ) y+y^{2}+2x\tag {1}\end{align}

This is Riccati first order non-linear ODE of the form of the general form \(y^{\prime }=P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\) where \(P\left ( x\right ) =2x,Q\left ( x\right ) =-\left ( x^{2}+1\right ) ,R\left ( x\right ) =1\). We can convert this to Bernoulli first order ODE in \(u\left ( x\right ) \), which is little easier to solve by using \(u=y-x^{2}-1\).  The difference between Bernoulli and Riccati is that the term \(P\left ( x\right ) =0\) in Bernoulli. If \(P\left ( x\right ) \neq 0\) and \(R\left ( x\right ) \neq 0\) then it is called Riccati.

Using \(u=y-x^{2}-1\) gives

\begin{align*} u^{\prime } & =y^{\prime }-2x\\ u^{\prime } & =\left [ -\left ( x^{2}+1\right ) y+y^{2}+2x\right ] -2x\\ & =-\left ( x^{2}+1\right ) \left ( u+x^{2}+1\right ) +\left ( u+x^{2}+1\right ) ^{2}\\ & =\left ( u+x^{2}+1\right ) \left [ \left ( u+x^{2}+1\right ) -\left ( x^{2}+1\right ) \right ] \\ & =\left ( u+x^{2}+1\right ) u\\ & =u^{2}+u\left ( 1+x^{2}\right ) \end{align*}

We see now this is Bernoulli since \(P\left ( x\right ) =0\). To solve Bernoulli we always start by dividing by \(u^{2}\) giving

\[ \frac {u^{\prime }}{u^{2}}=1+\frac {1}{u}\left ( 1+x^{2}\right ) \]

Next we let \(v=\frac {1}{u}\), hence \(v^{\prime }=-\frac {u^{\prime }}{u^{2}}\)therefore the above becomes

\begin{align*} -v^{\prime } & =1+v\left ( 1+x^{2}\right ) \\ v^{\prime }+v\left ( 1+x^{2}\right ) & =-1 \end{align*}

Integrating factor is \(e^{\int \left ( 1+x^{2}\right ) dx}=e^{\left ( x+\frac {x^{3}}{2}\right ) }\), therefore

\[ d\left ( e^{\left ( x+\frac {x^{3}}{2}\right ) }v\right ) =-e^{\left ( x+\frac {x^{3}}{2}\right ) }\]

Integrating

\begin{align*} e^{\left ( x+\frac {x^{3}}{2}\right ) }v & =-\int e^{\left ( x+\frac {x^{3}}{2}\right ) }dx+C\\ v\left ( x\right ) & =e^{-\left ( x+\frac {x^{3}}{2}\right ) }\left ( C-\int e^{\left ( x+\frac {x^{3}}{2}\right ) }dx\right ) \end{align*}

Therefore

\[ u=\frac {1}{v}=\frac {e^{\left ( x+\frac {x^{3}}{2}\right ) }}{\left ( C-\int e^{\left ( x+\frac {x^{3}}{2}\right ) }dx\right ) }\]

And since \(u=y-x^{2}-1\) then

\begin{align*} y\left ( x\right ) & =u+1+x^{2}\\ & =\frac {e^{\left ( x+\frac {x^{3}}{2}\right ) }}{\left ( C-\int e^{\left ( x+\frac {x^{3}}{2}\right ) }dx\right ) }+1+x^{2}\end{align*}