2.1918   ODE No. 1918

\[ \left \{x'(t)=-x(t) y(t)^2+x(t)+y(t),y'(t)=x(t)^2 y(t)-x(t)-y(t)\right \} \]

Mathematica : cpu = 0.377096 (sec), leaf count = 0

DSolve[{Derivative[1][x][t] == x[t] + y[t] - x[t]*y[t]^2, Derivative[1][y][t] == -x[t] - y[t] + x[t]^2*y[t]},{x[t], y[t]},t]
 

, could not solve

DSolve[{Derivative[1][x][t] == x[t] + y[t] - x[t]*y[t]^2, Derivative[1][y][t] == -x[t] - y[t] + x[t]^2*y[t]}, {x[t], y[t]}, t]

Maple : cpu = 0. (sec), leaf count = 0

dsolve({diff(x(t),t) = -x(t)*y(t)^2+x(t)+y(t), diff(y(t),t) = x(t)^2*y(t)-x(t)-y(t)})
 

, result contains DESol or ODESolStruc

\[[\{x \left (t \right ) = 0\}, \{y \left (t \right ) = 0\}]\]