2.1917 ODE No. 1917
\[ \left \{x'(t)=y(t)^2-\cos (x(t)),y'(t)=y(t) (-\sin (x(t)))\right \} \]
✓ Mathematica : cpu = 120.75 (sec), leaf count = 3406
DSolve[{Derivative[1][x][t] == -Cos[x[t]] + y[t]^2, Derivative[1][y][t] == -(Sin[x[t]]*y[t])},{x[t], y[t]},t]
\[\left \{\left \{y(t)\to \frac {3 \sqrt [3]{2} \cos \left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3}}{2\ 2^{2/3} \cos ^2(K[1])+2 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3} \cos (K[1])+3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}+\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[1])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}}dK[1]\& \right ]\left [\frac {t}{2}+c_2\right ]\right )}{\sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3}}{2\ 2^{2/3} \cos ^2(K[1])+2 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3} \cos (K[1])+3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}+\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[1])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}}dK[1]\& \right ]\left [\frac {t}{2}+c_2\right ]\right )}}}+\frac {\sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3}}{2\ 2^{2/3} \cos ^2(K[1])+2 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3} \cos (K[1])+3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}+\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[1])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}}dK[1]\& \right ]\left [\frac {t}{2}+c_2\right ]\right )}}}{3 \sqrt [3]{2}},x(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3}}{2\ 2^{2/3} \cos ^2(K[1])+2 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}\right ){}^{2/3} \cos (K[1])+3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}+\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[1])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[1])}}}dK[1]\& \right ]\left [\frac {t}{2}+c_2\right ]\right \},\left \{y(t)\to -\frac {3 \left (1+i \sqrt {3}\right ) \cos \left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3}}{2 i 2^{2/3} \sqrt {3} \cos ^2(K[2])-2\ 2^{2/3} \cos ^2(K[2])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3} \cos (K[2])-3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}}dK[2]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}{2^{2/3} \sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3}}{2 i 2^{2/3} \sqrt {3} \cos ^2(K[2])-2\ 2^{2/3} \cos ^2(K[2])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3} \cos (K[2])-3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}}dK[2]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3}}{2 i 2^{2/3} \sqrt {3} \cos ^2(K[2])-2\ 2^{2/3} \cos ^2(K[2])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3} \cos (K[2])-3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}}dK[2]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}}}{6 \sqrt [3]{2}},x(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3}}{2 i 2^{2/3} \sqrt {3} \cos ^2(K[2])-2\ 2^{2/3} \cos ^2(K[2])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}\right ){}^{2/3} \cos (K[2])-3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[2])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[2])}}}dK[2]\& \right ]\left [\frac {t}{4}+c_2\right ]\right \},\left \{y(t)\to -\frac {3 \left (1-i \sqrt {3}\right ) \cos \left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3}}{-2 i 2^{2/3} \sqrt {3} \cos ^2(K[3])-2\ 2^{2/3} \cos ^2(K[3])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3} \cos (K[3])+3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}+i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}}dK[3]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}{2^{2/3} \sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3}}{-2 i 2^{2/3} \sqrt {3} \cos ^2(K[3])-2\ 2^{2/3} \cos ^2(K[3])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3} \cos (K[3])+3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}+i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}}dK[3]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{81 c_1+\sqrt {6561 c_1{}^2-2916 \cos ^3\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3}}{-2 i 2^{2/3} \sqrt {3} \cos ^2(K[3])-2\ 2^{2/3} \cos ^2(K[3])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3} \cos (K[3])+3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}+i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}}dK[3]\& \right ]\left [\frac {t}{4}+c_2\right ]\right )}}}{6 \sqrt [3]{2}},x(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3}}{-2 i 2^{2/3} \sqrt {3} \cos ^2(K[3])-2\ 2^{2/3} \cos ^2(K[3])+4 \left (3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}\right ){}^{2/3} \cos (K[3])+3 i \sqrt [3]{2} \sqrt {3} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-3 \sqrt [3]{2} c_1 \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}+i \sqrt [3]{2} \sqrt {3} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}-\sqrt [3]{2} \sqrt {9 c_1{}^2-4 \cos ^3(K[3])} \sqrt [3]{3 c_1+\sqrt {9 c_1{}^2-4 \cos ^3(K[3])}}}dK[3]\& \right ]\left [\frac {t}{4}+c_2\right ]\right \}\right \}\]
✓ Maple : cpu = 1.447 (sec), leaf count = 101
dsolve({diff(x(t),t) = y(t)^2-cos(x(t)), diff(y(t),t) = -y(t)*sin(x(t))})
\[\left [\left \{x \left (t \right ) = \operatorname {RootOf}\left (-2 \left (\int _{}^{\textit {\_Z}}\frac {1}{-3 \tan \left (\operatorname {RootOf}\left (-3 \sqrt {-\cos \left (\textit {\_f} \right )^{2}}\, \ln \left (\frac {9 \cos \left (\textit {\_f} \right )^{2} \left (\tan \left (\textit {\_Z} \right )^{2}+1\right )}{4}\right )+c_{1} \sqrt {-\cos \left (\textit {\_f} \right )^{2}}+2 \textit {\_Z} \cos \left (\textit {\_f} \right )\right )\right ) \sqrt {-\cos \left (\textit {\_f} \right )^{2}}+\cos \left (\textit {\_f} \right )}d \textit {\_f} \right )+t +c_{2} \right )\right \}, \left \{y \left (t \right ) = \sqrt {\frac {d}{d t}x \left (t \right )+\cos \left (x \left (t \right )\right )}, y \left (t \right ) = -\sqrt {\frac {d}{d t}x \left (t \right )+\cos \left (x \left (t \right )\right )}\right \}\right ]\]