2.1825 ODE No. 1825
\[ f(x)+y''(x) h\left (y'(x)\right )+j(y(x)) y'(x)=0 \]
✗ Mathematica : cpu = 0.0389029 (sec), leaf count = 0
DSolve[f[x] + j[y[x]]*Derivative[1][y][x] + h[Derivative[1][y][x]]*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[f[x] + j[y[x]]*Derivative[1][y][x] + h[Derivative[1][y][x]]*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(h(diff(y(x),x))*diff(diff(y(x),x),x)+j(y(x))*diff(y(x),x)+f=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_f} \left (\textit {\_b} \right )\:\& \text {where}\:\left [\left \{\int _{}^{\textit {\_f} \left (\textit {\_b} \right )}j \left (\textit {\_a} \right )d \textit {\_a} +\int _{}^{\frac {d}{d \textit {\_b}}\textit {\_f} \left (\textit {\_b} \right )}h \left (\textit {\_a} \right )d \textit {\_a} +\textit {\_b} f +c_{1} =0\right \}, \left \{\textit {\_b} =x , \textit {\_f} \left (\textit {\_b} \right )=y \left (x \right )\right \}, \left \{x =\textit {\_b} , y \left (x \right )=\textit {\_f} \left (\textit {\_b} \right )\right \}\right ]\]