2.1824   ODE No. 1824

\[ y''(x) \left (a \sqrt {y'(x)^2+1}-x y'(x)\right )-y'(x)^2-1=0 \]

Mathematica : cpu = 0.919293 (sec), leaf count = 331

DSolve[-1 - Derivative[1][y][x]^2 + (-(x*Derivative[1][y][x]) + a*Sqrt[1 + Derivative[1][y][x]^2])*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {\sqrt {x^2 \left (a^2-x^2+c_1{}^2\right )} \left (2 \sqrt {-a^2+x^2-c_1{}^2}+c_1 \tan ^{-1}\left (\frac {a^2-a x+c_1{}^2}{c_1 \sqrt {-a^2+x^2-c_1{}^2}}\right )+c_1 \tan ^{-1}\left (\frac {a^2+a x+c_1{}^2}{c_1 \sqrt {-a^2+x^2-c_1{}^2}}\right )\right )}{2 x \sqrt {-a^2+x^2-c_1{}^2}}+c_1 \left (-\tanh ^{-1}\left (\frac {x}{a}\right )\right )+c_2\right \},\left \{y(x)\to \frac {\sqrt {x^2 \left (a^2-x^2+c_1{}^2\right )} \left (2 \sqrt {-a^2+x^2-c_1{}^2}+c_1 \tan ^{-1}\left (\frac {a^2-a x+c_1{}^2}{c_1 \sqrt {-a^2+x^2-c_1{}^2}}\right )+c_1 \tan ^{-1}\left (\frac {a^2+a x+c_1{}^2}{c_1 \sqrt {-a^2+x^2-c_1{}^2}}\right )\right )}{2 x \sqrt {-a^2+x^2-c_1{}^2}}+c_1 \left (-\tanh ^{-1}\left (\frac {x}{a}\right )\right )+c_2\right \}\right \}\]

Maple : cpu = 0.979 (sec), leaf count = 96

dsolve((a*(diff(y(x),x)^2+1)^(1/2)-x*diff(y(x),x))*diff(diff(y(x),x),x)-diff(y(x),x)^2-1=0,y(x))
 
\[y \left (x \right ) = \int \frac {-c_{1} a^{2}+x \sqrt {a^{2} \left (a^{2}+c_{1}^{2}-x^{2}\right )}}{a^{3}-a \,x^{2}}d x +c_{2}\]