2.1780   ODE No. 1780

\[ -a x-b+y(x)^2 y''(x)+y(x) y'(x)^2=0 \]

Mathematica : cpu = 20.5195 (sec), leaf count = 0

DSolve[-b - a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-b - a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 1.094 (sec), leaf count = 171

dsolve(y(x)^2*diff(diff(y(x),x),x)+y(x)*diff(y(x),x)^2-a*x-b=0,y(x))
 
\[y \left (x \right ) = \operatorname {RootOf}\left (\sqrt {3}\, b \left (\int _{}^{\textit {\_Z}}-\frac {\left (-\left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{{1}/{3}} \sqrt {3}\, b +2 \sqrt {3}\, a -3 b \left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{{1}/{3}} \tan \left (\operatorname {RootOf}\left (-2 b^{2} \left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{{2}/{3}} \textit {\_g}^{2} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{2} \textit {\_Z}^{3}-1\right )}{\sum }\frac {\ln \left (\textit {\_g} -\textit {\_R} \right )}{\textit {\_R}^{2}}\right )+2 \textit {\_Z} \sqrt {3}\, a^{2}-\ln \left (\frac {1}{\sqrt {3}\, \sin \left (2 \textit {\_Z} \right )+2+\cos \left (2 \textit {\_Z} \right )}\right ) a^{2}-6 c_{1} a^{2}\right )\right )\right ) \textit {\_g}^{2}}{\textit {\_g}^{3} a^{2}-1}d \textit {\_g} \right ) a -6 b \ln \left (a x +b \right )+6 c_{2} a \right ) \left (a x +b \right )\]