2.1779   ODE No. 1779

\[ a x+y(x)^2 y''(x)+y(x) y'(x)^2=0 \]

Mathematica : cpu = 22.2317 (sec), leaf count = 0

DSolve[a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0.769 (sec), leaf count = 113

dsolve(y(x)^2*diff(diff(y(x),x),x)+y(x)*diff(y(x),x)^2+a*x=0,y(x))
 
\[\ln \left (x \right )-\frac {\sqrt {3}\, \left (\int _{}^{\frac {y \left (x \right )}{x}}\frac {\textit {\_g}^{2} \left (3 \left (\frac {a}{\textit {\_g}^{3}}\right )^{{1}/{3}} \tan \left (\operatorname {RootOf}\left (2 \textit {\_Z} \sqrt {3}-\ln \left (\frac {1}{2 \sqrt {3}\, \sin \left (\textit {\_Z} \right ) \cos \left (\textit {\_Z} \right )+2 \cos \left (\textit {\_Z} \right )^{2}+1}\right )-6 c_{1} -6 \left (\int \frac {\left (\frac {a}{\textit {\_g}^{3}}\right )^{{2}/{3}} \textit {\_g}^{2}}{\textit {\_g}^{3}+a}d \textit {\_g} \right )\right )\right )+\sqrt {3}\, \left (\left (\frac {a}{\textit {\_g}^{3}}\right )^{{1}/{3}}-2\right )\right )}{\textit {\_g}^{3}+a}d \textit {\_g} \right )}{6}-c_{2} = 0\]