2.1719 ODE No. 1719
\[ a y'(x)^2+f(x) y(x) y'(x)+g(x) y(x)^2+y(x) y''(x)=0 \]
✗ Mathematica : cpu = 42.8557 (sec), leaf count = 0
DSolve[g[x]*y[x]^2 + f[x]*y[x]*Derivative[1][y][x] + a*Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[g[x]*y[x]^2 + f[x]*y[x]*Derivative[1][y][x] + a*Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(y(x),x),x)*y(x)+a*diff(y(x),x)^2+f(x)*y(x)*diff(y(x),x)+g(x)*y(x)^2=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (-a -1\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}-f \left (\textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )-g \left (\textit {\_a} \right )\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}\right \}, \left \{x =\textit {\_a} , y \left (x \right )={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]