2.1718   ODE No. 1718

\[ d y(x)^{1-a}+a y'(x)^2+b y(x) y'(x)+c y(x)^2+y(x) y''(x)=0 \]

Mathematica : cpu = 1.7783 (sec), leaf count = 744

DSolve[c*y[x]^2 + d*y[x]^(1 - a) + b*y[x]*Derivative[1][y][x] + a*Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \left (-\frac {a d \exp \left (\frac {1}{2} x \left (\sqrt {-4 a c+b^2-4 c}+b\right )-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{(a+1) c}-\frac {d \exp \left (\frac {1}{2} x \left (\sqrt {-4 a c+b^2-4 c}+b\right )-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{(a+1) c}+\frac {a b c_1 \exp \left (-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{b \sqrt {-4 a c+b^2-4 c}-4 a c+b^2-4 c}+\frac {b c_1 \exp \left (-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{b \sqrt {-4 a c+b^2-4 c}-4 a c+b^2-4 c}+\frac {a c_1 \sqrt {-4 a c+b^2-4 c} \exp \left (-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{b \sqrt {-4 a c+b^2-4 c}-4 a c+b^2-4 c}+\frac {c_1 \sqrt {-4 a c+b^2-4 c} \exp \left (-\frac {x \left (b \sqrt {-4 a c+b^2-4 c}-4 (a+1) c+b^2\right )}{\sqrt {-4 a c+b^2-4 c}+b}-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}\right )}{b \sqrt {-4 a c+b^2-4 c}-4 a c+b^2-4 c}+c_2 e^{-\frac {2 (a+1) c x}{\sqrt {-4 a c+b^2-4 c}+b}}\right ){}^{\frac {1}{a+1}}\right \}\right \}\]

Maple : cpu = 0.382 (sec), leaf count = 136

dsolve(diff(diff(y(x),x),x)*y(x)+a*diff(y(x),x)^2+b*y(x)*diff(y(x),x)+c*y(x)^2+d*y(x)^(1-a)=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\frac {x \sqrt {\left (-4 a -4\right ) c +b^{2}}}{2 a +2}} {\mathrm e}^{-\frac {b x}{2 a +2}} \left (\frac {\left (-4 a -4\right ) c^{3}+b^{2} c^{2}}{\left (-d \,{\mathrm e}^{-\frac {\left (-b +\sqrt {\left (-4 a -4\right ) c +b^{2}}\right ) x}{2}} \sqrt {\left (-4 a -4\right ) c +b^{2}}+\left (a +1\right ) c \left (c_{2} {\mathrm e}^{-x \sqrt {\left (-4 a -4\right ) c +b^{2}}}-c_{1} \right )\right )^{2}}\right )^{-\frac {1}{2 a +2}}\]