2.1696   ODE No. 1696

\[ y(x) y''(x)-a x^2=0 \]

Mathematica : cpu = 12.4349 (sec), leaf count = 0

DSolve[-(a*x^2) + y[x]*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(a*x^2) + y[x]*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)*y(x)-a*x^2=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int 2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +2 c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\frac {\left (2 \textit {\_a}^{2}-a \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}}{\textit {\_a}}+3 \textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =\frac {y \left (x \right )}{x^{2}}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {x^{2}}{-x \left (\frac {d}{d x}y \left (x \right )\right )+2 y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int 2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +2 c_{1}}\right \}\right ]\]