2.1695 ODE No. 1695
\[ y(x) y''(x)-a x=0 \]
✗ Mathematica : cpu = 13.9161 (sec), leaf count = 0
DSolve[-(a*x) + y[x]*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[-(a*x) + y[x]*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(y(x),x),x)*y(x)-a*x=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \left (\textit {\_a} \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )^{{3}/{2}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\frac {\left (3 \textit {\_a}^{2}-4 a \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}}{4 \textit {\_a}}+2 \textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =\frac {y \left (x \right )}{x^{{3}/{2}}}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {2 x^{{3}/{2}}}{-2 x \left (\frac {d}{d x}y \left (x \right )\right )+3 y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )^{{3}/{2}}\right \}\right ]\]