2.1673 ODE No. 1673
\[ a \left (e^{y(x)}-1\right )+x^2 y''(x)=0 \]
✗ Mathematica : cpu = 25.8071 (sec), leaf count = 0
DSolve[a*(-1 + E^y[x]) + x^2*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[a*(-1 + E^y[x]) + x^2*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x^2*diff(diff(y(x),x),x)+a*(exp(y(x))-1)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (a \,{\mathrm e}^{\textit {\_a}}-a \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}-\textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{x \left (\frac {d}{d x}y \left (x \right )\right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \right \}\right ]\]