2.1672   ODE No. 1672

\[ x^2 y''(x)-a \left (y(x)^n-y(x)\right )=0 \]

Mathematica : cpu = 10.7071 (sec), leaf count = 0

DSolve[-(a*(-y[x] + y[x]^n)) + x^2*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(a*(-y[x] + y[x]^n)) + x^2*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(x^2*diff(diff(y(x),x),x)-a*(y(x)^n-y(x))=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (-\textit {\_a}^{n} a +\textit {\_a} a \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}-\textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{x \left (\frac {d}{d x}y \left (x \right )\right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \right \}\right ]\]