2.1616 ODE No. 1616
\[ \frac {1}{4} \left (a^2-1\right ) y(x)+a y'(x)+b y(x)^n+y''(x)=0 \]
✗ Mathematica : cpu = 14.5127 (sec), leaf count = 0
DSolve[((-1 + a^2)*y[x])/4 + b*y[x]^n + a*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[((-1 + a^2)*y[x])/4 + b*y[x]^n + a*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)+b*y(x)^n+1/4*(a^2-1)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )+a \textit {\_}b\left (\textit {\_a} \right )+b \,\textit {\_a}^{n}+\frac {\textit {\_a} \,a^{2}}{4}-\frac {\textit {\_a}}{4}=0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1} , y \left (x \right )=\textit {\_a} \right \}\right ]\]