2.1615   ODE No. 1615

\[ -\frac {2 (n+1) (n+2) y(x) \left (y(x)^{\frac {n}{n+1}}-1\right )}{n^2}-\frac {(3 n+4) y'(x)}{n}+y''(x)=0 \]

Mathematica : cpu = 60.1103 (sec), leaf count = 0

DSolve[(-2*(1 + n)*(2 + n)*y[x]*(-1 + y[x]^(n/(1 + n))))/n^2 - ((4 + 3*n)*Derivative[1][y][x])/n + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[(-2*(1 + n)*(2 + n)*y[x]*(-1 + y[x]^(n/(1 + n))))/n^2 - ((4 + 3*n)*Derivative[1][y][x])/n + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)-(3*n+4)/n*diff(y(x),x)-2*(n+1)*(n+2)/n^2*y(x)*(y(x)^(n/(n+1))-1)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )-\frac {2 \textit {\_a}^{\frac {n}{n +1}} \textit {\_a} \,n^{2}+6 \textit {\_a}^{\frac {n}{n +1}} \textit {\_a} n +3 \textit {\_}b\left (\textit {\_a} \right ) n^{2}-2 \textit {\_a} \,n^{2}+4 \textit {\_a}^{\frac {n}{n +1}} \textit {\_a} +4 \textit {\_}b\left (\textit {\_a} \right ) n -6 \textit {\_a} n -4 \textit {\_a}}{n^{2}}=0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1} , y \left (x \right )=\textit {\_a} \right \}\right ]\]