2.1564 ODE No. 1564
\[ \left (-12 n^2-4 x^4+3\right ) y(x)-\left (4 n^2+3\right ) x^2 y''(x)+\left (12 n^2-3\right ) x y'(x)+x^4 y^{(4)}(x)+4 x^3 y^{(3)}(x)=0 \]
✓ Mathematica : cpu = 1.03295 (sec), leaf count = 230
DSolve[(3 - 12*n^2 - 4*x^4)*y[x] + (-3 + 12*n^2)*x*Derivative[1][y][x] - (3 + 4*n^2)*x^2*Derivative[2][y][x] + 4*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt [4]{-1} c_1 x \, _0F_3\left (;\frac {1}{2},\frac {3}{2}-\frac {n}{2},\frac {n}{2}+\frac {3}{2};\frac {x^4}{64}\right )}{2 \sqrt {2}}+c_3 (-1)^{\frac {1}{4} (-2 n-1)} 2^{2 n+\frac {1}{2} (2 n+1)+1} x^{-2 n-1} \, _0F_3\left (;1-n,\frac {1}{2}-\frac {n}{2},-\frac {n}{2};\frac {x^4}{64}\right )+c_4 (-1)^{\frac {1}{4} (2 n-1)} 2^{\frac {1}{2} (1-2 n)-2 n+1} x^{2 n-1} \, _0F_3\left (;\frac {n}{2}+\frac {1}{2},\frac {n}{2},n+1;\frac {x^4}{64}\right )+\frac {(-1)^{3/4} c_2 x^3 \, _0F_3\left (;\frac {3}{2},2-\frac {n}{2},\frac {n}{2}+2;\frac {x^4}{64}\right )}{16 \sqrt {2}}\right \}\right \}\]
✓ Maple : cpu = 0.279 (sec), leaf count = 88
dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)-(4*n^2+3)*x^2*diff(diff(y(x),x),x)+(12*n^2-3)*x*diff(y(x),x)-(4*x^4+12*n^2-3)*y(x)=0,y(x))
\[y \left (x \right ) = \frac {c_{4} x^{2} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {1}{2}, \frac {n}{2}+\frac {3}{2}, \frac {3}{2}-\frac {n}{2}\right ], \frac {x^{4}}{64}\right )+c_{3} x^{4} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {3}{2}, \frac {n}{2}+2, -\frac {n}{2}+2\right ], \frac {x^{4}}{64}\right )+c_{2} \operatorname {KelvinBei}\left (-n , x\right )^{2}+\operatorname {KelvinBer}\left (-n , x\right )^{2} c_{2} +c_{1} \left (\operatorname {KelvinBer}\left (n , x\right )^{2}+\operatorname {KelvinBei}\left (n , x\right )^{2}\right )}{x}\]