2.1563 ODE No. 1563
\[ \left (4 n^2-4 x^4-1\right ) y(x)-\left (4 n^2-1\right ) x^2 y''(x)-\left (4 n^2-1\right ) x y'(x)+x^4 y^{(4)}(x)+4 x^3 y^{(3)}(x)=0 \]
✓ Mathematica : cpu = 1.51929 (sec), leaf count = 232
DSolve[(-1 + 4*n^2 - 4*x^4)*y[x] - (-1 + 4*n^2)*x*Derivative[1][y][x] - (-1 + 4*n^2)*x^2*Derivative[2][y][x] + 4*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt [4]{-1} c_2 x \, _0F_3\left (;\frac {3}{2},1-\frac {n}{2},\frac {n}{2}+1;\frac {x^4}{64}\right )}{2 \sqrt {2}}-\frac {2 (-1)^{3/4} \sqrt {2} c_1 \, _0F_3\left (;\frac {1}{2},\frac {1}{2}-\frac {n}{2},\frac {n}{2}+\frac {1}{2};\frac {x^4}{64}\right )}{x}+c_3 (-1)^{\frac {1}{4} (1-2 n)} 2^{2 n+\frac {1}{2} (2 n-1)-1} x^{1-2 n} \, _0F_3\left (;1-n,1-\frac {n}{2},\frac {3}{2}-\frac {n}{2};\frac {x^4}{64}\right )+c_4 (-1)^{\frac {1}{4} (2 n+1)} 2^{\frac {1}{2} (-2 n-1)-2 n-1} x^{2 n+1} \, _0F_3\left (;\frac {n}{2}+1,\frac {n}{2}+\frac {3}{2},n+1;\frac {x^4}{64}\right )\right \}\right \}\]
✓ Maple : cpu = 0.287 (sec), leaf count = 87
dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)-(4*n^2-1)*x^2*diff(diff(y(x),x),x)-(4*n^2-1)*x*diff(y(x),x)+(-4*x^4+4*n^2-1)*y(x)=0,y(x))
\[y \left (x \right ) = \frac {c_{4} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {1}{2}, -\frac {n}{2}+\frac {1}{2}, \frac {n}{2}+\frac {1}{2}\right ], \frac {x^{4}}{64}\right )+\left (\operatorname {hypergeom}\left (\left [\right ], \left [\frac {3}{2}, \frac {n}{2}+1, -\frac {n}{2}+1\right ], \frac {x^{4}}{64}\right ) c_{3} +c_{2} \operatorname {KelvinBei}\left (-n , x\right )^{2}+\operatorname {KelvinBer}\left (-n , x\right )^{2} c_{2} +c_{1} \left (\operatorname {KelvinBer}\left (n , x\right )^{2}+\operatorname {KelvinBei}\left (n , x\right )^{2}\right )\right ) x^{2}}{x}\]