2.1489 ODE No. 1489
\[ x^2 y^{(3)}(x)+(x+1) y''(x)-y(x)=0 \]
✗ Mathematica : cpu = 0.644289 (sec), leaf count = 0
DSolve[-y[x] + (1 + x)*Derivative[2][y][x] + x^2*Derivative[3][y][x] == 0,y[x],x]
, DifferentialRoot result
\[\left \{\left \{y(x)\to (x)\right \}\right \}\]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x^2*diff(diff(diff(y(x),x),x),x)+(1+x)*diff(diff(y(x),x),x)-y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{-\textit {\_Y} \left (x \right )+\left (1+x \right ) \left (\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )\right )+x^{2} \left (\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )\right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]