2.1488 ODE No. 1488
\[ a x^2 y(x)+x^2 y^{(3)}(x)-6 y'(x)=0 \]
✓ Mathematica : cpu = 0.434482 (sec), leaf count = 102
DSolve[a*x^2*y[x] - 6*Derivative[1][y][x] + x^2*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {c_1 e^{-\sqrt [3]{a} x} \left (\sqrt [3]{a} x+2\right )}{x}+\frac {c_2 e^{\sqrt [3]{-1} \sqrt [3]{a} x} \left (\sqrt [3]{a} x+2 (-1)^{2/3}\right )}{x}+\frac {c_3 e^{-(-1)^{2/3} \sqrt [3]{a} x} \left (\sqrt [3]{a} x-2 \sqrt [3]{-1}\right )}{x}\right \}\right \}\]
✓ Maple : cpu = 0.725 (sec), leaf count = 132
dsolve(x^2*diff(diff(diff(y(x),x),x),x)-6*diff(y(x),x)+y(x)*a*x^2=0,y(x))
\[y \left (x \right ) = \frac {-\left (\left (-i-\sqrt {3}\right ) \left (-a^{4}\right )^{{2}/{3}}+i a^{3} x \right ) c_{3} {\mathrm e}^{-\frac {i \left (-a^{4}\right )^{{1}/{3}} x \left (-i+\sqrt {3}\right )}{2 a}}+\left (\left (-i+\sqrt {3}\right ) \left (-a^{4}\right )^{{2}/{3}}+i a^{3} x \right ) c_{2} {\mathrm e}^{\frac {i \left (-a^{4}\right )^{{1}/{3}} x \left (\sqrt {3}+i\right )}{2 a}}+{\mathrm e}^{\frac {\left (-a^{4}\right )^{{1}/{3}} x}{a}} c_{1} \left (a^{3} x +2 \left (-a^{4}\right )^{{2}/{3}}\right )}{x}\]