2.1481   ODE No. 1481

\[ -f(x)+\left (x^2-3\right ) y''(x)+x y^{(3)}(x)+4 x y'(x)+2 y(x)=0 \]

Mathematica : cpu = 0.724026 (sec), leaf count = 432

DSolve[-f[x] + 2*y[x] + 4*x*Derivative[1][y][x] + (-3 + x^2)*Derivative[2][y][x] + x*Derivative[3][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {1}{240} e^{-\frac {x^2}{2}} \left (-240 x^5 \int _1^x\left (-\frac {1}{240} \left (15 \text {Ei}\left (\frac {K[1]^2}{2}\right )+16 e^{\frac {K[1]^2}{2}}\right ) f(K[1])+\frac {1}{15} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {K[1]}{\sqrt {2}}\right ) K[1] f(K[1])+\frac {7 e^{\frac {K[1]^2}{2}} f(K[1])}{120 K[1]^2}+\frac {e^{\frac {K[1]^2}{2}} f(K[1])}{20 K[1]^4}\right )dK[1]-8 \sqrt {2 \pi } x^5 \text {erfi}\left (\frac {x}{\sqrt {2}}\right ) \int _1^x-f(K[2]) K[2]dK[2]-15 x^5 \text {Ei}\left (\frac {x^2}{2}\right ) \int _1^xf(K[3])dK[3]+16 e^{\frac {x^2}{2}} x^2 \int _1^x-f(K[2]) K[2]dK[2]+60 e^{\frac {x^2}{2}} x \int _1^xf(K[3])dK[3]+48 e^{\frac {x^2}{2}} \int _1^x-f(K[2]) K[2]dK[2]+16 e^{\frac {x^2}{2}} x^4 \int _1^x-f(K[2]) K[2]dK[2]+30 e^{\frac {x^2}{2}} x^3 \int _1^xf(K[3])dK[3]\right )+\frac {1}{30} c_2 e^{-\frac {x^2}{2}} \left (\sqrt {2 \pi } x^5 \text {erfi}\left (\frac {x}{\sqrt {2}}\right )-2 e^{\frac {x^2}{2}} \left (x^4+x^2+3\right )\right )+\frac {1}{16} c_3 e^{-\frac {x^2}{2}} x^5 \left (\text {Ei}\left (\frac {x^2}{2}\right )-\frac {2 e^{\frac {x^2}{2}} \left (x^2+2\right )}{x^4}\right )+c_1 e^{-\frac {x^2}{2}} x^5\right \}\right \}\]

Maple : cpu = 0.165 (sec), leaf count = 44

dsolve(x*diff(diff(diff(y(x),x),x),x)+(x^2-3)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x)-f(x)=0,y(x))
 
\[y \left (x \right ) = \left (c_{3} +\int \frac {\left (2 x c_{1} +c_{2} -\left (\int \int -f \left (x \right )d x d x \right )\right ) {\mathrm e}^{\frac {x^{2}}{2}}}{x^{6}}d x \right ) {\mathrm e}^{-\frac {x^{2}}{2}} x^{5}\]