2.1480   ODE No. 1480

\[ -(2 v+x) y''(x)-(-2 v+x-1) y'(x)+x y^{(3)}(x)+(x-1) y(x)=0 \]

Mathematica : cpu = 0.209096 (sec), leaf count = 93

DSolve[(-1 + x)*y[x] - (-1 - 2*v + x)*Derivative[1][y][x] - (2*v + x)*Derivative[2][y][x] + x*Derivative[3][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {c_3 e^x x^{2 v+2} \Gamma \left (v+\frac {3}{2}\right ) \, _1\tilde {F}_1\left (v+\frac {3}{2};2 v+3;-2 x\right )}{\Gamma \left (\frac {1}{2}-v\right )}+c_2 2^{-2 v-2} e^x G_{2,3}^{2,1}\left (2 x\left |\begin {array}{c} 1,v+\frac {3}{2} \\ 1,2 (v+1),0 \\\end {array}\right .\right )+c_1 e^x\right \}\right \}\]

Maple : cpu = 0.231 (sec), leaf count = 35

dsolve(x*diff(diff(diff(y(x),x),x),x)-(x+2*v)*diff(diff(y(x),x),x)-(x-2*v-1)*diff(y(x),x)+(x-1)*y(x)=0,y(x))
 
\[y \left (x \right ) = c_{1} {\mathrm e}^{x}+c_{2} x^{v +1} \operatorname {BesselI}\left (-v -1, x\right )+c_{3} x^{v +1} \operatorname {BesselK}\left (v +1, x\right )\]