2.1459   ODE No. 1459

\[ -y'(x) (a+4 n (n+1) \wp (x;\text {g2},\text {g3}))-2 n (n+1) y(x) \wp '(x;\text {g2},\text {g3})+y^{(3)}(x)=0 \]

Mathematica : cpu = 0.0206267 (sec), leaf count = 0

DSolve[-2*n*(1 + n)*WeierstrassPPrime[x, {g2, g3}]*y[x] - (a + 4*n*(1 + n)*WeierstrassP[x, {g2, g3}])*Derivative[1][y][x] + Derivative[3][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-2*n*(1 + n)*WeierstrassPPrime[x, {g2, g3}]*y[x] - (a + 4*n*(1 + n)*WeierstrassP[x, {g2, g3}])*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(diff(y(x),x),x),x)-(4*n*(n+1)*WeierstrassP(x,g2,g3)+a)*diff(y(x),x)-2*n*(n+1)*WeierstrassPPrime(x,g2,g3)*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = {\operatorname {DESol}\left (\left \{\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )+\left (-n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )-n \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )-\frac {a}{4}\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}^{2}\]