2.1458 ODE No. 1458
\[ \frac {1}{2} y(x) \left (\left (1-n^2\right ) \wp '(x;\text {g2},\text {g3})-a\right )+\left (1-n^2\right ) y'(x) \wp (x;\text {g2},\text {g3})+y^{(3)}(x)=0 \]
✗ Mathematica : cpu = 0.0208827 (sec), leaf count = 0
DSolve[((-a + (1 - n^2)*WeierstrassPPrime[x, {g2, g3}])*y[x])/2 + (1 - n^2)*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + Derivative[3][y][x] == 0,y[x],x]
, could not solve
DSolve[((-a + (1 - n^2)*WeierstrassPPrime[x, {g2, g3}])*y[x])/2 + (1 - n^2)*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(diff(y(x),x),x),x)+(-n^2+1)*WeierstrassP(x,g2,g3)*diff(y(x),x)+1/2*((-n^2+1)*WeierstrassPPrime(x,g2,g3)-a)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )+\left (-n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+\operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )\right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (-\frac {\operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) n^{2}}{2}+\frac {\operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )}{2}-\frac {a}{2}\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]