2.1308   ODE No. 1308

\[ x^3 y''(x)-x^2 y'(x)+x y(x)-\log ^3(x)=0 \]

Mathematica : cpu = 0.0164369 (sec), leaf count = 41

DSolve[-Log[x]^3 + x*y[x] - x^2*Derivative[1][y][x] + x^3*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {2 \log ^3(x)+6 \log ^2(x)+9 \log (x)+6}{8 x}+c_1 x+c_2 x \log (x)\right \}\right \}\]

Maple : cpu = 0.027 (sec), leaf count = 40

dsolve(x^3*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x)-ln(x)^3=0,y(x))
 
\[y \left (x \right ) = \frac {2 \ln \left (x \right )^{3}+6 \ln \left (x \right )^{2}+\left (8 c_{1} x^{2}+9\right ) \ln \left (x \right )+8 c_{2} x^{2}+6}{8 x}\]