2.1307   ODE No. 1307

\[ x^3 y''(x)+(x+1) x y'(x)-2 y(x)=0 \]

Mathematica : cpu = 0.132893 (sec), leaf count = 54

DSolve[-2*y[x] + x*(1 + x)*Derivative[1][y][x] + x^3*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {c_1 e^{\frac {1}{x}} (x+1)}{x}-\frac {c_2 \left (e^{\frac {1}{x}} x \text {Ei}\left (-\frac {1}{x}\right )+e^{\frac {1}{x}} \text {Ei}\left (-\frac {1}{x}\right )+x\right )}{x}\right \}\right \}\]

Maple : cpu = 0.066 (sec), leaf count = 36

dsolve(x^3*diff(diff(y(x),x),x)+x*(1+x)*diff(y(x),x)-2*y(x)=0,y(x))
 
\[y \left (x \right ) = \frac {{\mathrm e}^{\frac {1}{x}} c_{2} \left (1+x \right ) \operatorname {Ei}_{1}\left (\frac {1}{x}\right )+c_{1} \left (1+x \right ) {\mathrm e}^{\frac {1}{x}}-c_{2} x}{x}\]