2.1269   ODE No. 1269

\[ ((2 v+5) x-2 v-3) y'(x)+(v+1) y(x)+2 (x-1) x y''(x)=0 \]

Mathematica : cpu = 0.0470976 (sec), leaf count = 60

DSolve[(1 + v)*y[x] + (-3 - 2*v + (5 + 2*v)*x)*Derivative[1][y][x] + 2*(-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_2 i^{-2 v-1} x^{\frac {1}{2} (-2 v-1)} \, _2F_1\left (\frac {1}{2},-v;\frac {1}{2}-v;x\right )+c_1 \, _2F_1\left (\frac {1}{2},v+1;v+\frac {3}{2};x\right )\right \}\right \}\]

Maple : cpu = 0.129 (sec), leaf count = 40

dsolve(2*x*(x-1)*diff(diff(y(x),x),x)+((2*v+5)*x-2*v-3)*diff(y(x),x)+(v+1)*y(x)=0,y(x))
 
\[y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [\frac {1}{2}, v +1\right ], \left [\frac {3}{2}+v \right ], x\right )+c_{2} x^{-\frac {1}{2}-v} \operatorname {hypergeom}\left (\left [\frac {1}{2}, -v \right ], \left [\frac {1}{2}-v \right ], x\right )\]