2.1268   ODE No. 1268

\[ y(x) (a x+b)+2 (x-1) x y''(x)+(2 x-1) y'(x)=0 \]

Mathematica : cpu = 0.0655249 (sec), leaf count = 50

DSolve[(b + a*x)*y[x] + (-1 + 2*x)*Derivative[1][y][x] + 2*(-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 \text {MathieuC}\left [-a-2 b,\frac {a}{2},\cos ^{-1}\left (\sqrt {x}\right )\right ]+c_2 \text {MathieuS}\left [-a-2 b,\frac {a}{2},\cos ^{-1}\left (\sqrt {x}\right )\right ]\right \}\right \}\]

Maple : cpu = 0.171 (sec), leaf count = 39

dsolve(2*x*(x-1)*diff(diff(y(x),x),x)+(2*x-1)*diff(y(x),x)+(a*x+b)*y(x)=0,y(x))
 
\[y \left (x \right ) = c_{1} \operatorname {MathieuC}\left (-a -2 b , \frac {a}{2}, \arccos \left (\sqrt {x}\right )\right )+c_{2} \operatorname {MathieuS}\left (-a -2 b , \frac {a}{2}, \arccos \left (\sqrt {x}\right )\right )\]