2.115   ODE No. 115

\[ -x (y(x)-x) \sqrt {x^2+y(x)^2}+x y'(x)-y(x)=0 \]

Mathematica : cpu = 0.231856 (sec), leaf count = 104

DSolve[-y[x] - x*(-x + y[x])*Sqrt[x^2 + y[x]^2] + x*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {\sqrt {2} x \tanh ^2\left (\frac {1}{4} \left (-\sqrt {2} x^2-2 \sqrt {2} c_1\right )\right )-2 x \tanh \left (\frac {1}{4} \left (-\sqrt {2} x^2-2 \sqrt {2} c_1\right )\right )}{\sqrt {2}-2 \tanh \left (\frac {1}{4} \left (-\sqrt {2} x^2-2 \sqrt {2} c_1\right )\right )}\right \}\right \}\]

Maple : cpu = 0.338 (sec), leaf count = 49

dsolve(x*diff(y(x),x)-x*(y(x)-x)*(y(x)^2+x^2)^(1/2)-y(x) = 0,y(x))
 
\[\ln \left (\frac {2 x \left (\sqrt {2 y \left (x \right )^{2}+2 x^{2}}+y \left (x \right )+x \right )}{y \left (x \right )-x}\right )+\frac {\sqrt {2}\, x^{2}}{2}-\ln \left (x \right )-c_{1} = 0\]

Hand solution

\[ xy^{\prime }=x\left ( y-x\right ) \sqrt {y^{2}-x^{2}}+y \]

Let \(y=xu\), then \(y^{\prime }=u+xu^{\prime }\) and the above becomes

\begin{align*} x\left ( u+xu^{\prime }\right ) & =x\left ( xu-x\right ) \sqrt {\left ( xu\right ) ^{2}-x^{2}}+xu\\ \left ( u+xu^{\prime }\right ) & =\left ( xu-x\right ) \sqrt {\left ( xu\right ) ^{2}-x^{2}}+u\\ xu^{\prime } & =\left ( xu-x\right ) x\sqrt {u^{2}-1}\\ u^{\prime } & =x\left ( u-1\right ) \sqrt {u^{2}-1}\end{align*}

Separable.

\begin{align*} \frac {du}{\left ( u-1\right ) \sqrt {u^{2}-1}} & =xdx\\ \frac {-u-1}{\sqrt {u^{2}-1}} & =\frac {x^{2}}{2}+C \end{align*}

But \(y=xu\), hence

\[ \frac {-\frac {y}{x}-1}{\sqrt {\left ( \frac {y}{x}\right ) ^{2}-1}}=\frac {x^{2}}{2}+C \]

Let \(\frac {y}{x}=z\)

\begin{align*} \frac {-z-1}{\sqrt {z^{2}-1}} & =\frac {x^{2}}{2}+C\\ -z-1 & =\sqrt {z^{2}-1}\left ( \frac {x^{2}}{2}+C\right ) \\ \left ( -z-1\right ) ^{2} & =\left ( z^{2}-1\right ) \left ( \frac {x^{2}}{2}+C\right ) ^{2}\\ z^{2}+1+2z & =z^{2}\left ( \frac {x^{2}}{2}+C\right ) ^{2}-\left ( \frac {x^{2}}{2}+C\right ) ^{2}\\ z^{2}\left ( 1-\left ( \frac {x^{2}}{2}+C\right ) ^{2}\right ) +2z+1+\left ( \frac {x^{2}}{2}+C\right ) ^{2} & =0 \end{align*}

\(\allowbreak \)

Solving for \(z\) (quadratic formula, some conditions apply), one of the solutions is

\[ z=\frac {4Cx^{2}+4C^{2}+x^{4}+4}{4Cx^{2}+4C^{2}+x^{4}-4}\]

Hence

\[ y=x\frac {4Cx^{2}+4C^{2}+x^{4}+4}{4Cx^{2}+4C^{2}+x^{4}-4}\]

Need to work on verification. Kamke gives the final solution as

\[ y=x\frac {-2Cx^{2}+C^{2}+x^{4}+4}{-2Cx^{2}+C^{2}+x^{4}-4}\]

I am not sure where my error now is. Need to look at this again.