2.114 ODE No. 114
\[ -x \sqrt {x^2+y(x)^2}+x y'(x)-y(x)=0 \]
✓ Mathematica : cpu = 0.0849056 (sec), leaf count = 54
DSolve[-y[x] - x*Sqrt[x^2 + y[x]^2] + x*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {x \tanh (x+c_1)}{\sqrt {1-\tanh ^2(x+c_1)}}\right \},\left \{y(x)\to \frac {x \tanh (x+c_1)}{\sqrt {1-\tanh ^2(x+c_1)}}\right \}\right \}\]
✓ Maple : cpu = 10.057 (sec), leaf count = 28
dsolve(x*diff(y(x),x)-x*(y(x)^2+x^2)^(1/2)-y(x) = 0,y(x))
\[\ln \left (\sqrt {y \left (x \right )^{2}+x^{2}}+y \left (x \right )\right )-x -\ln \left (x \right )-c_{1} = 0\]
Hand solution
\[ xy^{\prime }=x\sqrt {x^{2}+y^{2}}+y \]
Let \(y=xv\), then \(y^{\prime }=v+xv^{\prime }\) and the above becomes
\begin{align*} x\left ( v+xv^{\prime }\right ) & =x\sqrt {x^{2}+\left ( xv\right ) ^{2}}+xv\\ \left ( v+xv^{\prime }\right ) & =x\sqrt {1+v^{2}}+v\\ xv^{\prime } & =x\sqrt {1+v^{2}}\\ v^{\prime } & =\sqrt {1+v^{2}}\end{align*}
Separable.
\[ \frac {dv}{\sqrt {1+v^{2}}}=dx \]
Integrating
\begin{align*} \operatorname {arcsinh}\left ( v\right ) & =x+C\\ v & =\sinh \left ( x+C\right ) \end{align*}
Since \(y=xv\) then
\[ y=x\sinh \left ( x+C\right ) \]
Verification
ode:=x*diff(y(x),x)=x*sqrt(x^2+y(x)^2)+y(x);
y0:=x*sinh(x+_C1);
odetest(y(x)=y0,ode) assuming x>0;
0