4.9.2.1.4 Example 3B \(y^{\prime \prime }=\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\)
\begin{align} y^{\prime \prime } & =\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\tag {1}\\ y\left ( 0\right ) & =1\nonumber \end{align}
This is slightly alternative way to solving the ode. Let \(p=y^{\prime }\) then \(y^{\prime \prime }=p^{\prime }\). Hence the ode
becomes
\begin{equation} p^{\prime }=\sqrt {1+p^{2}} \tag {2}\end{equation}
Solving this as first order gives
\[ p\left ( x\right ) =\sinh \left ( x+c_{1}\right ) \]
But
\(p=y^{\prime }\) hence the above becomes
\[ y^{\prime }\left ( x\right ) =\sinh \left ( x+c_{1}\right ) \]
Integrating
gives
\begin{align} y & =\int \sinh \left ( x+c_{1}\right ) dx+c_{2}\nonumber \\ & =\cosh \left ( x+c_{1}\right ) +c_{2} \tag {3}\end{align}
Now we need to apply IC’s to find \(c_{1},c_{2}.\) We only have one IC \(y\left ( 0\right ) =1\). Applying this to the above
solution gives
\begin{align*} 1 & =\cosh \left ( c_{1}\right ) +c_{2}\\ c_{2} & =1-\cosh \left ( c_{1}\right ) \end{align*}
Hence (3) becomes
\[ y\left ( x\right ) =\cosh \left ( x+c_{1}\right ) +1-\cosh \left ( c_{1}\right ) \]