4.9.2.1.3 Example 3A \(y^{\prime \prime }=\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\)
\begin{align} y^{\prime \prime } & =\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\tag {1}\\ y\left ( 0\right ) & =1\nonumber \end{align}
Notice that only one IC is given. Let \(p=y^{\prime }\) then \(y^{\prime \prime }=p^{\prime }\). Hence the ode becomes
\begin{equation} p^{\prime }=\sqrt {1+p^{2}} \tag {2}\end{equation}
We can’t use IC on
this ode, since the IC is only on
\(y\) and not
\(y^{\prime }\). Solving this as first order gives
\[ p\left ( x\right ) =\sinh \left ( x+c_{1}\right ) \]
But
\(p=y^{\prime }\)
hence the above becomes
\[ y^{\prime }\left ( x\right ) =\sinh \left ( x+c_{1}\right ) \]
Now we solve this using the IC
\(y\left ( 0\right ) =1\). Solving the above
gives
\begin{equation} y=\cosh \left ( x+c_{1}\right ) +c_{2} \tag {3}\end{equation}
Applying IC, and now we need to be careful. We need to solve for
\(c_{2}\) and not
\(c_{1}\).
\begin{align*} 1 & =\cosh \left ( 0+c_{1}\right ) +c_{2}\\ c_{2} & =1-\cosh \left ( c_{1}\right ) \end{align*}
Hence (3) becomes
\[ y\left ( x\right ) =\cosh \left ( x+c_{1}\right ) +1-\cosh \left ( c_{1}\right ) \]