# |
ODE |
Mathematica |
Maple |
\[ {}x^{\prime } = \lambda x \] |
✓ |
✓ |
|
\[ {}m v^{\prime } = -m g +k v^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = k x-x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \] |
✓ |
✗ |
|
\[ {}y^{\prime }+\frac {y}{x} = x^{2} \] |
✗ |
✗ |
|
\[ {}x^{\prime }+t x = 4 t \] |
✓ |
✓ |
|
\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \,{\mathrm e}^{-x} = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+5 x = t \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \] |
✓ |
✓ |
|
\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \] |
✓ |
✓ |
|
\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{x} y+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \] |
✓ |
✓ |
|
\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {x^{2}+t^{2}}}{t x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = k x-x^{2} \] |
✓ |
✓ |
|
\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{3} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x+\sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = 9 y^{4} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \] |
✓ |
✓ |
|
\[ {}x^{2}+{y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y} \] |
✓ |
✓ |
|
\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x +y^{3}} \] |
✓ |
✓ |
|
\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \] |
✗ |
✓ |
|
\[ {}y^{2}+{y^{\prime }}^{2} = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3}+x^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -5 y\right )^{\frac {1}{3}}+2 \] |
✓ |
✓ |
|
\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+5 x = 10 t +2 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \] |
✓ |
✓ |
|
\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \] |
✓ |
✓ |
|
\[ {}x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x y\right ) \] |
✗ |
✗ |
|
\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (x y\right ) \] |
✗ |
✗ |
|
\[ {}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \] |
✗ |
✗ |
|
\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \] |
✓ |
✓ |
|
\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y \left (-{y^{\prime }}^{2}+1\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \] |
✓ |
✗ |
|