3.1.56 Problems 5501 to 5600

Table 3.111: First order ode

#

ODE

Mathematica

Maple

11991

\[ {}x^{\prime } = \lambda x \]

11992

\[ {}m v^{\prime } = -m g +k v^{2} \]

11993

\[ {}x^{\prime } = k x-x^{2} \]

11994

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]

11995

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

11996

\[ {}x^{\prime }+t x = 4 t \]

11997

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

11998

\[ {}y^{\prime }+y \,{\mathrm e}^{-x} = 1 \]

11999

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

12000

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]

12001

\[ {}x^{\prime }+5 x = t \]

12002

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]

12003

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

12004

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

12005

\[ {}1+{\mathrm e}^{x} y+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

12006

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-y \sin \left (x \right ) = 0 \]

12007

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

12008

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

12009

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

12010

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

12011

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

12012

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {x^{2}+t^{2}}}{t x} \]

12013

\[ {}x^{\prime } = k x-x^{2} \]

12112

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

12113

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

12114

\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \]

12115

\[ {}x y^{\prime }+y = x^{3} \]

12116

\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \]

12117

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

12118

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

12119

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

12120

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

12121

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

12122

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

12123

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

12124

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

12125

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

12126

\[ {}y = x y^{\prime }+\frac {1}{y} \]

12127

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

12128

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

12129

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

12130

\[ {}y^{2}+{y^{\prime }}^{2} = 4 \]

12131

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

12132

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

12133

\[ {}y^{\prime } = x +y^{2} \]

12134

\[ {}y^{\prime } = x y^{3}+x^{2} \]

12135

\[ {}y^{\prime } = x^{2}-y^{2} \]

12136

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

12137

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

12138

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

12139

\[ {}y^{\prime } = x -y^{2} \]

12140

\[ {}y^{\prime } = \left (x -5 y\right )^{\frac {1}{3}}+2 \]

12141

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

12142

\[ {}x^{\prime }+5 x = 10 t +2 \]

12143

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]

12144

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

12145

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

12146

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

12147

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

12148

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

12149

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

12150

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

12151

\[ {}x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \]

12152

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

12153

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

12154

\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \]

12155

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

12156

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

12157

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

12158

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

12159

\[ {}\left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

12160

\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \]

12161

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

12162

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12163

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \]

12212

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

12213

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

12214

\[ {}y^{\prime } = \sin \left (x y\right ) \]

12215

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

12216

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

12217

\[ {}x y^{\prime }+y = x y^{2} \]

12218

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

12219

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

12220

\[ {}y^{\prime } = \ln \left (x y\right ) \]

12221

\[ {}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

12228

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

12230

\[ {}y y^{\prime } = 1 \]

12231

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

12232

\[ {}5 y^{\prime }-x y = 0 \]

12233

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

12239

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

12317

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

12321

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]

12323

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

12324

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]

12344

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

12418

\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

12419

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

12420

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12421

\[ {}x y \left (-{y^{\prime }}^{2}+1\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]