3.1.55 Problems 5401 to 5500

Table 3.109: First order ode




#

ODE

Mathematica

Maple





11636

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]





11637

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]





11638

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]





11639

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]





11640

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]





11641

\[ {}y^{\prime }+4 x y = 8 x \]





11642

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]





11643

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 u v = 3 u \]





11644

\[ {}x y^{\prime }+\frac {\left (2 x +1\right ) y}{1+x} = -1+x \]





11645

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (1+x \right ) y = -1+x \]





11646

\[ {}x y^{\prime }+x y+y-1 = 0 \]





11647

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]





11648

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]





11649

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]





11650

\[ {}\cos \left (x \right )^{2}-\cos \left (x \right ) y-\left (\sin \left (x \right )+1\right ) y^{\prime } = 0 \]





11651

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]





11652

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]





11653

\[ {}x y^{\prime }+y = -2 x^{6} y^{4} \]





11654

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]





11655

\[ {}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{t x} \]





11656

\[ {}x y^{\prime }-2 y = 2 x^{4} \]





11657

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]





11658

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]





11659

\[ {}2 x \left (y+1\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]





11660

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]





11661

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]





11662

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]





11663

\[ {}x y^{\prime }+y = \left (x y\right )^{\frac {3}{2}} \]





11664

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]





11665

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right . \]





11666

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \]





11667

\[ {}\left (2+x \right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \]





11668

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]





11669

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]





11670

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]





11671

\[ {}\left (y+1\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]





11672

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]





11673

\[ {}y^{\prime } = -y^{2}+x y+1 \]





11674

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (1+4 x \right ) y-8 x^{3}-4 x^{2}+1 \]





11675

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]





11676

\[ {}\left (3 y^{2} x^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]





11677

\[ {}y-1+x \left (1+x \right ) y^{\prime } = 0 \]





11678

\[ {}x^{2}-2 y+x y^{\prime } = 0 \]





11679

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]





11680

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]





11681

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]





11682

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]





11683

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 y x^{4}} \]





11684

\[ {}\left (1+x \right ) y^{\prime }+x y = {\mathrm e}^{-x} \]





11685

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]





11686

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]





11687

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]





11688

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]





11689

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]





11690

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]





11691

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]





11692

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]





11693

\[ {}4 x y y^{\prime } = 1+y^{2} \]





11694

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]





11695

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]





11696

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0





11697

\[ {}\left (2+x \right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2





11698

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]





11699

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]





11700

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]





11701

\[ {}\left (1+x \right ) y^{2}+y+\left (2 x y+1\right ) y^{\prime } = 0 \]





11702

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]





11703

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]





11704

\[ {}8 x^{2} y^{3}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]





11705

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]





11706

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]





11707

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]





11708

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]





11709

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]





11710

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]





11711

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]





11712

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]





11968

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]





11969

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]





11970

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]





11971

\[ {}z^{\prime } = {\mathrm e}^{-2 x} x \]





11972

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]





11973

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]





11974

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]





11975

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]





11976

\[ {}x V^{\prime } = x^{2}+1 \]





11977

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]





11978

\[ {}x^{\prime } = -x+1 \]





11979

\[ {}x^{\prime } = x \left (2-x\right ) \]





11980

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]





11981

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]





11982

\[ {}x^{\prime } = x^{2}-x^{4} \]





11983

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]





11984

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]





11985

\[ {}x^{\prime } = t^{2} x \]





11986

\[ {}x^{\prime } = -x^{2} \]





11987

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]





11988

\[ {}x^{\prime }+p x = q \]





11989

\[ {}x y^{\prime } = k y \]





11990

\[ {}i^{\prime } = p \left (t \right ) i \]