# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t -y \] |
✓ |
✓ |
|
\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \tan \left (t \right )+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{t +1} \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = -y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}y \left (2 y^{2} x^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+3 x +y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\cot \left (x \right ) y+\frac {1}{\sin \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3}+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \] |
✓ |
✓ |
|
\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x +2 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right )+2 \cos \left (x \right ) y = 1 \] |
✓ |
✓ |
|
\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-\frac {y^{2}}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y-\left (-2+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (-1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 2 x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \] |
✓ |
✓ |
|
\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \] |
✓ |
✓ |
|
\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \] |
✓ |
✓ |
|
\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} \] |
✓ |
✓ |
|