# |
ODE |
Mathematica |
Maple |
\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \] |
✓ |
✗ |
|
\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-5 y-x \sqrt {y} = 0 \] |
✓ |
✓ |
|
\[ {}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y-2 x^{4} y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2 x^{2}-3 x y\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{4}+4 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{3} y^{6} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 x y-2 y+1+x \left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x +3 \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y+{y^{\prime }}^{2} = x^{3} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = 3 x y^{\prime }+y \] |
✓ |
✓ |
|
\[ {}8 x +1 = y {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y+2 x y^{\prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x = y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x = y-{y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \] |
✓ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \] |
✓ |
✓ |
|
\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{5}+2 x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-\sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-{y^{\prime }}^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \arcsin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{t^{2}+4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{3} \] |
✓ |
✓ |
|