3.2.13 Problems 1201 to 1300

Table 3.163: Second order linear ODE




#

ODE

Mathematica

Maple





6313

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]





6314

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]





6315

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]





6317

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]





6318

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]





6319

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]





6320

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]





6321

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]





6322

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]





6323

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





6324

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]





6325

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]





6326

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]





6327

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]





6328

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]





6329

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]





6330

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]





6331

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]





6332

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]





6333

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y = x \left (1+x \right )^{2} \]





6334

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]





6335

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]





6336

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]





6337

\[ {}y^{\prime \prime }+y = 0 \]





6338

\[ {}y^{\prime \prime }-y = 0 \]





6339

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]





6340

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]





6341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]





6342

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]





6343

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-1+x}+\frac {y}{-1+x} = 0 \]





6344

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]





6345

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]





6346

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]





6347

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]





6371

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]





6372

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]





6373

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]





6374

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]





6375

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]





6376

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]





6377

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]





6378

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]





6379

\[ {}y^{\prime \prime }+9 y = 0 \]





6380

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]





6381

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]





6382

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]





6383

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]





6384

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]





6385

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]





6386

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]





6387

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]





6388

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]





6389

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]





6390

\[ {}y^{\prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x \]





6391

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]





6392

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]





6393

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]





6394

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]





6395

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]





6396

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]





6397

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]





6398

\[ {}y^{\prime \prime }+y^{\prime } = \frac {-1+x}{x} \]





6399

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]





6400

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]





6402

\[ {}y^{\prime \prime } = -3 y \]





6499

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]





6500

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]





6501

\[ {}y^{\prime \prime }-y = t^{2} \]





6505

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]





6506

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]





6507

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]





6508

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]





6509

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]





6510

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]





6511

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]





6512

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]





6513

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0





6551

\[ {}y^{\prime \prime }+y = 0 \]





6553

\[ {}y^{\prime \prime }-y = 0 \]





6555

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]





6557

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]





6619

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]





6620

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]





6621

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]





6622

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]





6623

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]





6624

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]





6625

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]





6626

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]





6627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]





6628

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]





6629

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]





6630

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]





6631

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]





6632

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]





6633

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]





6634

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]





6635

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]





6636

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]





6637

\[ {}y^{\prime \prime }-x^{2} y = 0 \]