3.2.12 Problems 1101 to 1200

Table 3.161: Second order linear ODE

#

ODE

Mathematica

Maple

5960

\[ {}y^{\prime \prime }+10 y = 0 \]

5961

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

5962

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

5963

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

5964

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

5965

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

5966

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

5967

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

5968

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

5969

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

5970

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

5971

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

5982

\[ {}y^{\prime \prime }+y = 0 \]

5983

\[ {}y^{\prime \prime }-y = 0 \]

5989

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

5996

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

5997

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

5998

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

5999

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

6000

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

6001

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

6002

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \cos \left (2 x \right ) x \]

6003

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

6006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6008

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

6009

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6010

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6011

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6012

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

6013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6014

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6016

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

6017

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6018

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6029

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

6030

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

6031

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6032

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6033

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6034

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

6036

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

6037

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

6038

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

6039

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

6091

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

6092

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

6094

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

6096

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

6109

\[ {}y^{\prime \prime }+4 y = 0 \]

6110

\[ {}y^{\prime \prime }-4 y = 0 \]

6136

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6155

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

6239

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

6243

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

6268

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

6269

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

6270

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6271

\[ {}y^{\prime \prime }+8 y = 0 \]

6272

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6273

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6274

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

6275

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6276

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

6277

\[ {}y^{\prime \prime }+y = 0 \]

6278

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

6279

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

6280

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6281

\[ {}y^{\prime \prime } = 4 y \]

6282

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

6283

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6285

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6286

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

6287

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6288

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6289

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

6290

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6291

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

6292

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

6293

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

6294

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

6295

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6296

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

6297

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6298

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6299

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

6300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

6302

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

6303

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

6304

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

6305

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

6306

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

6307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

6308

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

6309

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

6310

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

6311

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

6312

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]