2.2.64 Problems 6301 to 6400

Table 2.129: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

1.323

6302

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

1.589

6303

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

1.573

6304

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

1.246

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

1.731

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

1.686

6307

\[ {}y^{\prime } x +3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

1.799

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

1.625

6309

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

2.565

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

1.701

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

1.635

6312

\[ {}t^{2} x^{\prime }+3 t x = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

1.652

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

1.723

6314

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

3.201

6315

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

2.576

6316

\[ {}y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x \]
i.c.

[_linear]

16.539

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4.378

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

1.530

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

1.661

6320

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

1.899

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

0.950

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

1.566

6323

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

1.601

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

3.078

6325

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.384

6326

\[ {}y^{\prime }+x y = 0 \]

[_separable]

0.315

6327

\[ {}y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.349

6328

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.382

6329

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

0.293

6330

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

0.283

6331

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.401

6332

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

7.144

6333

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

0.307

6334

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

0.337

6335

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

0.306

6336

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

0.362

6337

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.294

6338

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

37.028

6339

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

1.678

6340

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

1.339

6341

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

[_exact, _rational]

2.497

6342

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

1.850

6343

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2.802

6344

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

1.858

6345

\[ {}\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.634

6346

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.168

6347

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.783

6348

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

[[_Emden, _Fowler]]

1.302

6349

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (1+t \right ) x^{\prime }-\left (t -2\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.700

6350

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.668

6351

\[ {}\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.606

6352

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.033

6353

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.855

6354

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

[_separable]

0.698

6355

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.560

6356

\[ {}z^{\prime }-x^{2} z = 0 \]

[_separable]

0.609

6357

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.599

6358

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.606

6359

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.740

6360

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

[_Lienard]

0.624

6361

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.617

6362

\[ {}\left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.735

6363

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

0.660

6364

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.700

6365

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.692

6366

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

1.961

6367

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-y^{\prime } x +2 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.805

6368

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

[_separable]

0.640

6369

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

0.707

6370

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.646

6371

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

0.680

6372

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.704

6373

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.665

6374

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]
i.c.

[_separable]

0.804

6375

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]
i.c.

[_separable]

0.781

6376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.968

6377

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.747

6378

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.177

6379

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

[_linear]

0.726

6380

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

[_linear]

0.710

6381

\[ {}z^{\prime \prime }+z^{\prime } x +z = x^{2}+2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.609

6382

\[ {}y^{\prime \prime }-2 y^{\prime } x +3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.603

6383

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = \cos \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.693

6384

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.640

6385

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.464

6386

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.719

6387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.760

6388

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3.250

6389

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

[[_3rd_order, _missing_x]]

0.084

6390

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.566

6391

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

[[_high_order, _missing_x]]

0.090

6392

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

[[_3rd_order, _missing_x]]

0.075

6393

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

87.248

6394

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.225

6395

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.979

6396

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.552

6397

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.261

6398

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

1.290

6399

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]
i.c.

[_linear]

1.599

6400

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.559