2.2.63 Problems 6201 to 6300

Table 2.127: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

3.102

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.347

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

6204

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.343

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.354

6206

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.345

6207

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.351

6208

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

[_linear]

1.684

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

1.479

6210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.080

6211

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

[[_2nd_order, _missing_x]]

1.224

6212

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

3.754

6213

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16.296

6214

\[ {}3 x^{3} y^{2} y^{\prime }-x^{2} y^{3} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.968

6215

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.839

6216

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.527

6217

\[ {}u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

1.606

6218

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

1.552

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

1.133

6220

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7.697

6221

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.536

6222

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.401

6223

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.276

6224

\[ {}\left (y+2 x \right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.004

6225

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.187

6226

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

4.606

6227

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

32.594

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

1.827

6229

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.099

6230

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

3.130

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.796

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

2.752

6233

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

1.948

6234

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

1.806

6235

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.936

6236

\[ {}y^{\prime } x = x y+y \]

[_separable]

0.593

6237

\[ {}y^{\prime } x = x y+y \]

[_separable]

1.552

6238

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

0.667

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

1.615

6240

\[ {}y^{\prime } x = y \]

[_separable]

0.534

6241

\[ {}y^{\prime } x = y \]

[_separable]

1.652

6242

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

0.617

6243

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

2.330

6244

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

0.601

6245

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

2.292

6246

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.680

6247

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.211

6248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

0.846

6249

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

1.380

6250

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.901

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.167

6252

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.464

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.223

6254

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.589

6255

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.710

6256

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.608

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

1.333

6258

\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

[‘y=_G(x,y’)‘]

1.813

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

1.954

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

1.877

6261

\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

0.952

6262

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

2.358

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

1.625

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

1.603

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

2.068

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

4.391

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

2.520

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

105.077

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

4.315

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

2.402

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

2.416

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

4.038

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

1.765

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

2.254

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

3.906

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

3.844

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

5.741

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

1.818

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

2.420

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

1.843

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.943

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

0.726

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

3.047

6284

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

81.235

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

2.168

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

1.790

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

2.016

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6.367

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

2.555

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

4.148

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

4.454

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

4.453

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

1.933

6294

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

2.091

6295

\[ {}x^{\prime }+t x = {\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

0.983

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

2.013

6297

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

4.582

6298

\[ {}x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.406

6299

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

1.562

6300

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

1.312