# |
ODE |
CAS classification |
Solved? |
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+d y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 2 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 y^{\prime } x +2 y = 30 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y = 96 x^{{5}/{2}}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 y^{\prime } x +24 y = x^{4}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 12 x^{2}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 4 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 y^{\prime } x -16 y = 9 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x +1\right ) x
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 9 x^{2}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y = 6 x
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y = 40 x^{3}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = F \left (x \right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = F \left (x \right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right )
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 y^{\prime } x +10 y = \frac {4}{x^{2}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y = \cos \left (\ln \left (x \right )\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \ln \left (x \right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 12 x^{2}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (x +8\right ) = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 y^{\prime } x -y-2 x^{3} = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = x \ln \left (x \right )
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = {\mathrm e}^{-x^{2}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 12 x \sin \left (x^{2}\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y = \frac {1}{x^{3}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y = \frac {1}{x^{13}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = -8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 y^{\prime } x +48 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 y^{\prime } x +15 y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 y^{\prime } x +45 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 y^{\prime } x +4 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 y^{\prime } x -12 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3}+3 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 y^{\prime } x = 17 x^{6}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x = \ln \left (x \right )^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = \ln \left (x \right )
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 c +\frac {10}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = \ln \left (x \right )^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 4 x
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = x^{2}+\frac {1}{x^{2}}
\] |
[[_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right )
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = x \ln \left (x \right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime } = 1
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}n \,x^{3} y^{\prime \prime \prime } = y-y^{\prime } x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{2}+3 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|