# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+8 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 16 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 3 x -1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2-\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x \,{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}+5 y^{\prime \prime \prime \prime }-y = 17
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y = {\mathrm e}^{x}-x \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 x^{2}-1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}+7
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = {\mathrm e}^{x}+2 x^{2}-5
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-12 y^{\prime } = x -2 x \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right )+\cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = \left (x^{2}+1\right ) \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 1+x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 5
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = 8 x^{5}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right )^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 16 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = -{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{x} \left (6 x^{2}+45 x +4\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{-2 x} \left (3 x^{2}-17 x +2\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{x} \left (16 x^{3}+24 x^{2}+2 x -1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = {\mathrm e}^{x} \left (15 x^{2}+34 x +14\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{-2 x} \left (1-15 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{x} \left (7+6 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-7 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (17+30 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = 2 \,{\mathrm e}^{3 x} \left (11-24 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = 2 \,{\mathrm e}^{4 x} \left (13+15 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }-12 y^{\prime \prime }+6 y^{\prime }-y = {\mathrm e}^{\frac {x}{2}} \left (1+4 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }-7 y^{\prime }+6 y = -3 \,{\mathrm e}^{-x} \left (-8 x^{2}+8 x +12\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y = -3 \,{\mathrm e}^{2 x} \left (11+12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime } = -16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }-11 y^{\prime \prime }-9 y^{\prime }-2 y = -{\mathrm e}^{x} \left (1-6 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x^{2}+4 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+2 y = {\mathrm e}^{2 x} \left (x^{4}+x +24\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-5 y^{\prime }-2 y = 18 \,{\mathrm e}^{x} \left (5+2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }-4 y = -{\mathrm e}^{2 x} \left (15 x^{2}+28 x +4\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime }-y = 3 \,{\mathrm e}^{-\frac {x}{2}} \left (1-6 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{x} \left (-3 x^{2}+x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (18 x^{2}+33 x +13\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \left (12 x^{2}+26 x +15\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \left (11+12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \left (10 x^{2}-24 x +5\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (16+10 x \right ) \cos \left (x \right )+\left (30-10 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = {\mathrm e}^{-x} \left (\left (1-22 x \right ) \cos \left (2 x \right )-\left (1+6 x \right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y = {\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = -{\mathrm e}^{x} \left (\left (4 x^{2}+5 x +9\right ) \cos \left (2 x \right )-\left (-3 x^{2}-5 x +6\right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }+12 y = 8 \cos \left (2 x \right )-16 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+2 y = {\mathrm e}^{x} \left (\left (20+4 x \right ) \cos \left (x \right )-\left (12+12 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+20 y^{\prime }-24 y = -{\mathrm e}^{2 x} \left (\left (13-8 x \right ) \cos \left (2 x \right )-\left (8-4 x \right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+18 y^{\prime } = -{\mathrm e}^{3 x} \left (\left (2-3 x \right ) \cos \left (3 x \right )-\left (3+3 x \right ) \sin \left (3 x \right )\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = {\mathrm e}^{x} \left (8 \cos \left (x \right )+16 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }-4 y = {\mathrm e}^{x} \left (2 \cos \left (2 x \right )-\sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+15 y = {\mathrm e}^{2 x} \left (15 x \cos \left (2 x \right )+32 \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+13 y^{\prime \prime }+12 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (4-x \right ) \cos \left (x \right )-\left (x +5\right ) \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }-4 y = -{\mathrm e}^{-x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+32 y^{\prime \prime }+64 y^{\prime }+39 y = {\mathrm e}^{-2 x} \left (\left (4-15 x \right ) \cos \left (3 x \right )-\left (4+15 x \right ) \sin \left (3 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\left (7+8 x \right ) \cos \left (2 x \right )+\left (8-4 x \right ) \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+8 y^{\prime \prime }+8 y^{\prime }+4 y = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+32 y^{\prime \prime }-64 y^{\prime }+64 y = {\mathrm e}^{2 x} \left (\cos \left (2 x \right )-\sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+26 y^{\prime \prime }-40 y^{\prime }+25 y = {\mathrm e}^{2 x} \left (3 \cos \left (x \right )-\left (1+3 x \right ) \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}-2 \cos \left (x \right )+4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-4 \cos \left (x \right )+4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = -2-2 x +4 \,{\mathrm e}^{x}-6 \,{\mathrm e}^{-x}+96 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+9 y^{\prime }-10 y = 10 \,{\mathrm e}^{2 x}+20 \,{\mathrm e}^{x} \sin \left (2 x \right )-10
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}+9 \cos \left (2 x \right )-13 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 4 \,{\mathrm e}^{-x} \left (1-6 x \right )-2 x \cos \left (x \right )+2 \left (x +1\right ) \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = -12 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x}+10 \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y = -{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = \sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y = {\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = {\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = {\mathrm e}^{2 x} \left (10+3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = -{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = -2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = -{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = {\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x} \left (1-6 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{-x} \left (4-8 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }-y = {\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \left (20-12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y = 30 \cos \left (x \right )-10 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = F \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = F \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 6 x
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = x \cos \left (x \right )+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{2} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 5 x
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x^{2}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-k^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\lambda y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y-f = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\lambda y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}f y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-x^{\prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )} = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+x = t^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = {\mathrm e}^{2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 1
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y^{\prime \prime }
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y^{\prime \prime }
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+216 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 0
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = x
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x +\cos \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )} = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 3
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime } = 2
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = -2 x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 2 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \left (x +1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = x^{10}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 16 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = -x^{3}+1
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \frac {1}{x^{3}}
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = x +1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = x^{4}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-m^{2} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = \left ({\mathrm e}^{x}+1\right )^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = x^{4}+2 x +1
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-13 y^{\prime }+12 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = x^{4}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (x +1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = x^{2} {\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = \sin \left (x \right )^{2}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = f \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (x +1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = x \sin \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = f \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}a y^{\prime \prime \prime } = y^{\prime \prime }
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = \sin \left (x \right )^{2}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = \left ({\mathrm e}^{x}+1\right )^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|