2.2.25 Problems 2401 to 2500

Table 2.51: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.202

2402

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.085

2403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.419

2404

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.406

2405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.408

2406

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.121

2407

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.480

2408

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.271

2409

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.777

2410

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.250

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

1.679

2412

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19.166

2413

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.509

2414

\[ {}y^{\prime \prime }-t y = 0 \]

[[_Emden, _Fowler]]

0.462

2415

\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.593

2416

\[ {}y^{\prime \prime }-t^{3} y = 0 \]

[[_Emden, _Fowler]]

0.534

2417

\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.634

2418

\[ {}y^{\prime \prime }+t^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.463

2419

\[ {}y^{\prime \prime }-t^{3} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.474

2420

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.542

2421

\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.577

2422

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

0.759

2423

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.672

2424

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.565

2425

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.563

2426

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.590

2427

\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.521

2428

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.800

2429

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.635

2430

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.937

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.126

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

1.143

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.241

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.157

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.274

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.210

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.085

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.271

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.566

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.904

2441

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.359

2442

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

2443

\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.927

2444

\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.961

2445

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.284

2446

\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.956

2447

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.878

2448

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

0.812

2449

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.860

2450

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.872

2451

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.819

2452

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.899

2453

\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.139

2454

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

2455

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

0.783

2456

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.870

2457

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.879

2458

\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.871

2459

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.270

2460

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.286

2461

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.179

2462

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.689

2463

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

[_Lienard]

0.609

2464

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

[_Bessel]

0.815

2465

\[ {}t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

0.983

2466

\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.050

2467

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.789

2468

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.734

2469

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.807

2470

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

[_Bessel]

1.103

2471

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.192

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

1.830

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2.006

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

1.174

2475

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

1.227

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

1.243

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

1.443

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2.194

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2.726

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2.508

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2.477

2482

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

1.786

2483

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

1.688

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

1.759

2485

\[ {}y^{\prime }-2 t y = 1 \]
i.c.

[_linear]

1.298

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

1.875

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

1.838

2488

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.699

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2.130

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (1+y\right ) \]

[_separable]

1.479

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2.403

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2.457

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2.694

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2.763

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2.212

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2.675

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2.322

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2.841

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

1.572

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2.594