2.2.24 Problems 2301 to 2400

Table 2.49: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2301

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

1.197

2302

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

1.211

2303

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

1.234

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

1.471

2305

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2.125

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2.849

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2.302

2308

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

1.777

2309

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

1.700

2310

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

1.706

2311

\[ {}y^{\prime }-2 t y = 1 \]
i.c.

[_linear]

1.283

2312

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

1.874

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

1.957

2314

\[ {}y^{\prime }+\frac {y}{t} = \frac {1}{t^{2}} \]

[_linear]

0.234

2315

\[ {}y^{\prime }+\frac {y}{\sqrt {t}} = {\mathrm e}^{\frac {\sqrt {t}}{2}} \]

[_linear]

0.282

2316

\[ {}y^{\prime }+\frac {y}{t} = \cos \left (t \right )+\frac {\sin \left (t \right )}{t} \]

[_linear]

0.276

2317

\[ {}y^{\prime }+\tan \left (t \right ) y = \cos \left (t \right ) \sin \left (t \right ) \]

[_linear]

0.316

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2.111

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (1+y\right ) \]

[_separable]

1.526

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2.385

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2.427

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2.718

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2.744

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2.187

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

3.935

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2.359

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2.833

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

1.590

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2.480

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.409

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

75.784

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.766

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.567

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.890

2335

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.550

2336

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.765

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.240

2338

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

3.335

2339

\[ {}1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

1.887

2340

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

11.944

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2.096

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2.934

2343

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2.665

2344

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.711

2345

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

37.312

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.922

2347

\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]
i.c.

[_Riccati]

3.297

2348

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]
i.c.

[_Riccati]

13.352

2349

\[ {}y^{\prime } = t +y^{2} \]
i.c.

[[_Riccati, _special]]

15.599

2350

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]
i.c.

[_Riccati]

1.516

2351

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]
i.c.

[_Riccati]

1.523

2352

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]
i.c.

[_Riccati]

1.523

2353

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]
i.c.

[‘y=_G(x,y’)‘]

1.400

2354

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]
i.c.

[_Abel]

1.006

2355

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2.753

2356

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]
i.c.

[‘y=_G(x,y’)‘]

1.569

2357

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]
i.c.

[‘y=_G(x,y’)‘]

1.830

2358

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

5.856

2359

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

1.863

2360

\[ {}y^{\prime } = t \left (1+y\right ) \]
i.c.

[_separable]

1.533

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

4.300

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.757

2363

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.130

2364

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.256

2365

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.105

2366

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.377

2367

\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.179

2368

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.714

2369

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.678

2370

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.845

2371

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.805

2372

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.121

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

1.878

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

1.153

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.452

2376

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.141

2377

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.357

2378

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.288

2379

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2.212

2380

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.345

2381

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.459

2382

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.101

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4.301

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4.828

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.359

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2.891

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.209

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.204

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.574

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.534

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.516

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.655

2393

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.396

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.833

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

1.671

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.215

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

1.284

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.200

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.795

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.284