2.2.189 Problems 18801 to 18900

Table 2.379: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

2.240

18802

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

[_quadrature]

0.233

18803

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

5.684

18804

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

[_quadrature]

0.319

18805

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

4.984

18806

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

1.401

18807

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

80.742

18808

\[ {}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \]

[_quadrature]

61.075

18809

\[ {}4 y = x^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

2.510

18810

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.437

18811

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

[_quadrature]

0.686

18812

\[ {}x \left ({y^{\prime }}^{2}+1\right ) = 1 \]

[_quadrature]

0.273

18813

\[ {}x^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

0.327

18814

\[ {}y^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

1.181

18815

\[ {}y^{2}+x y y^{\prime }-x^{2} {y^{\prime }}^{2} = 0 \]

[_separable]

0.848

18816

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.908

18817

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.477

18818

\[ {}x^{2} \left (y-y^{\prime } x \right ) = y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries]]

2.884

18819

\[ {}y = y^{\prime } x +\arcsin \left (y^{\prime }\right ) \]

[_Clairaut]

1.721

18820

\[ {}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.955

18821

\[ {}x y \left (y-y^{\prime } x \right ) = x +y y^{\prime } \]

[_separable]

3.483

18822

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.797

18823

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.030

18824

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.516

18825

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

76.803

18826

\[ {}y = -y^{\prime } x +x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.861

18827

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

1.391

18828

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.913

18829

\[ {}\left (-y+y^{\prime } x \right )^{2} = a \left ({y^{\prime }}^{2}+1\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries]]

44.212

18830

\[ {}\left (-y+y^{\prime } x \right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10.826

18831

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.456

18832

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.903

18833

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left ({y^{\prime }}^{2}+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.974

18834

\[ {}y^{2} \left (1-{y^{\prime }}^{2}\right ) = b \]

[_quadrature]

3.760

18835

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

[_rational]

115.576

18836

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.068

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12.646

18838

\[ {}x +\frac {y^{\prime }}{\sqrt {{y^{\prime }}^{2}+1}} = a \]

[_quadrature]

0.491

18839

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

5.408

18840

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.171

18841

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

3.122

18842

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.933

18843

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

1.361

18844

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

[‘y=_G(x,y’)‘]

15.368

18845

\[ {}y-\frac {1}{\sqrt {{y^{\prime }}^{2}+1}} = b \]

[_quadrature]

1.565

18846

\[ {}y = y^{\prime } x +\frac {m}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.381

18847

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

106.115

18848

\[ {}y = y^{\prime } x +a \sqrt {{y^{\prime }}^{2}+1} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.089

18849

\[ {}{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.317

18850

\[ {}y^{\prime } \sqrt {x} = \sqrt {y} \]

[_separable]

9.083

18851

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

73.075

18852

\[ {}\left (1+y^{\prime }\right )^{3} = \frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a} \]

[[_homogeneous, ‘class C‘], _dAlembert]

29.460

18853

\[ {}y^{2} \left ({y^{\prime }}^{2}+1\right ) = r^{2} \]

[_quadrature]

4.362

18854

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

0.278

18855

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.359

18856

\[ {}a {y^{\prime }}^{3} = 27 y \]

[_quadrature]

1.308

18857

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.433

18858

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

5.386

18859

\[ {}y^{2}-2 x y y^{\prime }+\left (x^{2}-1\right ) {y^{\prime }}^{2} = m^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.596

18860

\[ {}y = y^{\prime } x +\sqrt {b^{2}+a^{2} y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.855

18861

\[ {}y = y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.317

18862

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.250

18863

\[ {}4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

0.273

18864

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = 12 y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.651

18865

\[ {}{y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }+y^{2}-b^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.645

18866

\[ {}\left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

[_rational]

108.234

18867

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

1.088

18868

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.068

18869

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

1.085

18870

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

1.085

18871

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

[[_3rd_order, _missing_x]]

0.066

18872

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

0.076

18873

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

2.006

18874

\[ {}y^{\prime \prime \prime \prime }-m^{2} y = 0 \]

[[_high_order, _missing_x]]

0.095

18875

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.089

18876

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.201

18877

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

1.278

18878

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.350

18879

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.500

18880

\[ {}y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.158

18881

\[ {}y^{\prime \prime \prime }-y = \left ({\mathrm e}^{x}+1\right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.154

18882

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.370

18883

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.116

18884

\[ {}y^{\prime \prime \prime }+8 y = x^{4}+2 x +1 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.129

18885

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.151

18886

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.597

18887

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.651

18888

\[ {}y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.269

18889

\[ {}y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.142

18890

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.684

18891

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.814

18892

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.748

18893

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.723

18894

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.079

18895

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

[[_high_order, _missing_x]]

0.088

18896

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

[[_3rd_order, _missing_y]]

0.135

18897

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.522

18898

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

[[_2nd_order, _with_linear_symmetries]]

1.491

18899

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.252

18900

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.112