2.2.188 Problems 18701 to 18800

Table 2.377: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18701

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

71.387

18702

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.250

18703

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.798

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.543

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

1.144

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

2.093

18707

\[ {}x = y+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.456

18708

\[ {}y = y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.316

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.665

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.765

18711

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-3 z=0 \\ 7 y^{\prime }+63 y-36 z=0 \end {array}\right ] \]

system_of_ODEs

0.405

18712

\[ {}\left [\begin {array}{c} z^{\prime }+2 y^{\prime }+3 y=0 \\ y^{\prime }+3 y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.417

18713

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+z=0 \\ z^{\prime }+3 y+5 z=0 \end {array}\right ] \]

system_of_ODEs

0.421

18714

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+2 z=0 \\ z^{\prime }+2 y-4 z=0 \end {array}\right ] \]

system_of_ODEs

0.594

18715

\[ {}\left [\begin {array}{c} y^{\prime }-3 y-2 z=0 \\ z^{\prime }+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.706

18716

\[ {}\left [\begin {array}{c} y^{\prime }+z^{\prime }+6 y=0 \\ z^{\prime }+5 y+z=0 \end {array}\right ] \]

system_of_ODEs

0.595

18717

\[ {}\left [\begin {array}{c} z^{\prime }+y^{\prime }+5 y-3 z=x +{\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{x} \end {array}\right ] \]

system_of_ODEs

0.490

18718

\[ {}\left [\begin {array}{c} z^{\prime }+y+3 z={\mathrm e}^{x} \\ y^{\prime }+3 y+4 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

0.531

18719

\[ {}\left [\begin {array}{c} z^{\prime }-3 y+2 z={\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{3 x} \end {array}\right ] \]

system_of_ODEs

0.711

18720

\[ {}\left [\begin {array}{c} z^{\prime }+5 y-2 z=x \\ y^{\prime }+4 y+z=x \end {array}\right ] \]

system_of_ODEs

0.822

18721

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-9 z={\mathrm e}^{x} \\ y^{\prime }-y-3 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

1.201

18722

\[ {}\left [\begin {array}{c} y^{\prime }-2 y-2 z={\mathrm e}^{3 x} \\ z^{\prime }+5 y-2 z={\mathrm e}^{4 x} \end {array}\right ] \]

system_of_ODEs

0.966

18723

\[ {}{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.324

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.382

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.668

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.058

18727

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

1.915

18728

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

25.759

18729

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

1.158

18730

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

2.990

18731

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.732

18732

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.111

18733

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.111

18734

\[ {}\left (4 y+3 x \right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.043

18735

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.085

18736

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.623

18737

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.733

18738

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.736

18739

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.260

18740

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.677

18741

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

[_exact]

2.586

18742

\[ {}y-y^{\prime } x +\ln \left (x \right ) = 0 \]

[_linear]

1.150

18743

\[ {}\left (1+x y\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.748

18744

\[ {}a \left (y^{\prime } x +2 y\right ) = x y y^{\prime } \]

[_separable]

1.371

18745

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

1.702

18746

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

2.222

18747

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.023

18748

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.798

18749

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.159

18750

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.579

18751

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.515

18752

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.036

18753

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

28.099

18754

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6.800

18755

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.654

18756

\[ {}y^{\prime } x -a y = x +1 \]

[_linear]

1.254

18757

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.182

18758

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

3.766

18759

\[ {}\left (x +1\right ) y^{\prime }-n y = {\mathrm e}^{x} \left (x +1\right )^{n +1} \]

[_linear]

1.344

18760

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

[_linear]

1.233

18761

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.454

18762

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.340

18763

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.369

18764

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

[_rational, _Bernoulli]

2.790

18765

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

2.014

18766

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3.315

18767

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.302

18768

\[ {}-y+y^{\prime } x = x \sqrt {x^{2}+y^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.037

18769

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

37.316

18770

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

1.658

18771

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

1.625

18772

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x^{3}}{y^{2}} \]

[_rational, _Bernoulli]

2.323

18773

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.856

18774

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.091

18775

\[ {}y^{\prime } x +\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.316

18776

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.710

18777

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

[_linear]

2.246

18778

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.644

18779

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.091

18780

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

2.041

18781

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.771

18782

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

4.711

18783

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

1.907

18784

\[ {}y^{\prime } = x^{3} y^{3}-x y \]

[_Bernoulli]

1.262

18785

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.329

18786

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

1.500

18787

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

1.667

18788

\[ {}\left (x^{2} y^{3}+x y\right ) y^{\prime } = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.457

18789

\[ {}y y^{\prime } = a x \]

[_separable]

2.169

18790

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

[_linear]

1.459

18791

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.517

18792

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

2.272

18793

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.758

18794

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

0.955

18795

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.990

18796

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.029

18797

\[ {}2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.239

18798

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.239

18799

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

0.924

18800

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.250